The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.
A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.
Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.
The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.
The study shows that inoculation with the non‑diazotrophic bacterium Enterobacter sp. SA187 significantly improves Arabidopsis thaliana growth under low nitrate conditions by increasing fresh weight, primary root length, and lateral root density, while enhancing nitrate accumulation and reducing shoot C:N ratios. Transcriptomic and mutant analyses reveal that these benefits depend on ethylene signaling and the activity of high‑affinity nitrate transporters NRT2.5 and NRT2.6, indicating an ethylene‑mediated, HATS‑dependent reprogramming of nitrogen uptake.
The study reveals that Arabidopsis ethylene receptors ETR1 and ERS1 function as Ca²⁺-permeable channels, with ETR1 specifically mediating ethylene‑induced cytosolic Ca²⁺ spikes that influence hypocotyl elongation. Homologous receptors from diverse land plants and algae also show Ca²⁺ permeability, and ethylene further enhances this activity, indicating a conserved regulatory role across the green lineage.
The study demonstrates that ethylene signaling contributes to host resistance against the root parasitic plant Phelipanche aegyptiaca, as both water stress and parasitism activate ethylene responses in Arabidopsis roots. Application of the ethylene precursor ACC reduced parasite attachment, and mutants in ethylene signaling components (ETR1, CTR1) showed altered tolerance, highlighting ethylene-mediated defenses as a potential strategy for crop protection.
The study uncovers a reciprocal regulatory loop between type one protein phosphatases (TOPPs) and EIN2 in ethylene signaling, showing that ethylene induces TOPPs expression and that TOPPs dephosphorylate EIN2 at S655 to stabilize it and promote nuclear accumulation. TOPPs act upstream of EIN2, while EIN3/EIL1 transcriptionally activates TOPPs, linking dephosphorylation to enhanced ethylene responses and improved salt tolerance.