The study characterizes a conserved RNA structural element named DEAD within DEAD-box helicase genes in land plants, showing that it functions as a sensor of helicase activity to regulate alternative splicing in Arabidopsis thaliana. By modulating the folding of DEAD, the plant balances helicase transcript and protein levels via a negative feedback loop, and loss of this regulation leads to widespread splicing disruptions and severe stress phenotypes.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
Transcriptomic and physiological responses of soybean plants subjected to a combination of water deficit and heat stress under field conditions
Authors: Sinha, R., Pelaez-Vico, M. A., Dhakal, S., Ghani, A., Myers, R., Verma, M., Shostak, B., Ogden, A., Krueger, C. B., Costa Netto, J. R., Zandalinas, S. I., Joshi, T., Fritschi, F. B., Mittler, R.
A two‑year field study examined how soybean (Glycine max) vegetative and reproductive tissues respond transcriptionally and physiologically to water deficit, heat, and their combination. The field‑grown plants showed distinct transcriptomic patterns compared with controlled‑environment studies, especially under single stresses, while differential leaf‑pod transpiration observed in growth chambers was also present in the field. The generated transcriptomic dataset highlights the importance of field‑based omics for understanding crop stress responses.