Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 23 Papers

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

Alternative splicing of PIF4 regulates plant development under heat stress

Authors: Gonzalez, M. N., Alary, B., Szakonyi, D., Laloum, T., Duque, P., Martin, G.

Date: 2025-12-18 · Version: 1
DOI: 10.64898/2025.12.17.694898

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.

PIF4 alternative splicing heat stress photomorphogenesis post‑transcriptional regulation

Transcriptome and epigenome dynamics underpin cold stress priming in Arabidopsis

Authors: Sadykova, M., Saze, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694799

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.

stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics

GWAs reveals SUBER GENE1-mediated suberization via Type One Phosphatases

Authors: Han, J.-P., Lefebvre-Legendre, L., Yu, J., Capitao, M. B., Beaulieu, C., Gully, K., Shukla, V., Wu, Y., Boland, A., Nawrath, C., Barberon, M.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.05.06.652434

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.

suberin deposition Arabidopsis thaliana GWAS SBG1 TOPP phosphatases

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing

Heat stress induces unreduced male gamete formation by targeting meiocyte translation

Authors: Schindfessel, C., Cairo, A., Mikulkova, P., Jin, C., Lamelas Penas, L., Wigge, P. A., Riha, K., Geelen, D. N. V.

Date: 2025-11-13 · Version: 3
DOI: 10.1101/2022.08.11.503651

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that heat tolerance of meiotic division in Arabidopsis thaliana depends on sustained translation of cell‑cycle genes mediated by the protein TAM, which forms specialized condensates under high temperature. Natural variation was used to identify heat‑sensitive and heat‑tolerant TAM alleles, and boosting TAM translation with complementary peptides rescued heat‑induced meiotic defects, highlighting a potential mechanism driving polyploidisation under climate stress.

heat stress meiotic restitution TAM protein translation regulation polyploidisation

Daily Heat Stress Induces Accumulation of Non-functional PSII-LHCII and Donor-side Limitation of PSI via Downregulation of the Cyt bf Complex in Arabidopsis thaliana

Authors: Laihonen, L., Tomberg, T., Vuorijoki, L., Mulo, P., Rantala, M.

Date: 2025-11-08 · Version: 1
DOI: 10.1101/2025.11.06.687104

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined the impact of daily moderate heat stress (38 °C for 4 h) on Arabidopsis thaliana, revealing altered thylakoid ultrastructure and structurally intact but functionally impaired PSII‑LHCII complexes. A pronounced reduction in cytochrome b6f content limited PSI on the donor side, suggesting that Cyt b6f down‑regulation serves as an acclimation mechanism that protects PSI at the expense of overall photosynthetic efficiency.

heat stress thylakoid ultrastructure photosystem II cytochrome b6f Arabidopsis thaliana

Development alters genotype-environment interactions and shapes adaptation in Arabidopsis

Authors: Lawrence-Paul, E. H., Janakiraman, J., Lawrence-Paul, M. R., Ben-Zeev, R., Xu, Y., Penn, A., Lasky, J. R.

Date: 2025-11-03 · Version: 2
DOI: 10.1101/2025.05.13.653704

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.

vegetative phase change drought adaptation genotype-by-environment interaction GWAS developmental trade‑offs

Methionine Triggers Metabolic, Transcriptional, and Epigenetic Reprogramming in Arabidopsis Leaves

Authors: Yerushalmy, Y., Dafni, M., Rabach, N., Hacham, Y., Amir, R.

Date: 2025-11-03 · Version: 1
DOI: 10.1101/2025.11.02.686087

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.

methionine metabolism Arabidopsis thaliana DNA methylation transcriptome reprogramming stress hormone pathways

DNA methylome responses to biotic and abiotic stress in Arabidopsis thaliana: A multi-study analysis

Authors: Behl, R., Gallo-Franco, J. J., Hazarika, R. R., Zhang, Z., Wilming, F., Schnitzler, J.-P., Lindermayr, C., Johannes, F.

Date: 2025-10-20 · Version: 1
DOI: 10.1101/2025.10.20.682861

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrated 16 Arabidopsis thaliana whole‑genome bisulfite sequencing datasets from 13 stress experiments using a unified bioinformatic pipeline to map common and stress‑specific DNA methylation changes. Differentially methylated regions varied by stress type and methylation context, with CG DMRs enriched in gene bodies and CHG/CHH DMRs in transposable elements, some of which overlapped loci prone to stable epimutations. Gene ontology and TE enrichment analyses highlighted shared stress pathways and suggest environmental stress can generate heritable epigenetic variation.

DNA methylation stress response Arabidopsis thaliana transposable elements epimutations
Page 1 of 3 Next