Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 68 Papers

Role of AtCPK5 and AtCPK6 in the regulation of the plant immune response triggered by rhamnolipids in Arabidopsis

Authors: STANEK, J., FERNANDEZ, O., BOUDSOCQ, M., AGGAD, D., VILLAUME, S., PARENT, L., DHONDT CORDELIER, S., CROUZET, J., DOREY, S., CORDELIER, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683368

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.

rhamnolipids calcium dependent protein kinases Arabidopsis thaliana immunity reactive oxygen species defense gene expression

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology

Cytosolic Ca2+ as a universal signal for rapid root growth regulation

Authors: Randuch, M., Kulich, I., Vladimirtsev, D., Huang, S., Hedrich, R., Friml, J.

Date: 2025-10-17 · Version: 1
DOI: 10.1101/2025.10.17.683082

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that a rapid increase in cytosolic Ca²⁺ is the primary and sufficient signal mediating auxin‑induced root growth inhibition in Arabidopsis. Using live imaging, microfluidics, and optogenetic control of Ca²⁺ influx, the authors show that blocking Ca²⁺ entry prevents growth responses, while light‑triggered Ca²⁺ influx from the apoplast or ER mimics inhibition, indicating that diverse stimuli converge on a Ca²⁺‑dependent mechanism.

root growth auxin signaling cytosolic calcium optogenetics rapid growth inhibition

Phosphoproteomics uncovers rapid and specific transition from plant two-component system signaling to Ser/Thr phosphorylation by the intracellular redox sensor AHK5

Authors: Drechsler, T., Li, Z., Schulze, W. X., Harter, K. J. W.

Date: 2025-10-14 · Version: 1
DOI: 10.1101/2025.10.13.682113

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A comparative phosphoproteomics study using Arabidopsis thaliana ahk5 loss‑of‑function mutants and wild‑type seedlings revealed that the histidine kinase AHK5 mediates a rapid shift from multistep phosphorelay signaling to serine/threonine phosphorylation in response to H2O2. AHK5 controls ROS‑responsive phosphorylation of plasma‑membrane nanodomain proteins and orchestrates distinct ABA‑independent stomatal closure and ABA‑dependent root development pathways by modulating key components such as RBOHD, CAS, HPCA1, and auxin transporters.

AHK5 reactive oxygen species phosphoproteomics Arabidopsis thaliana nanodomain signaling

Ca2+ signature-dependent control of auxin sensitivity in Arabidopsis

Authors: Song, H., Baudon, A., Freund, M., Randuch, M., Pencik, A., Ondrej, N., He, Z., Kaufmann, K., Gilliham, M., Friml, J., Hedrich, R., Huang, S.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.04.680446

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses an optogenetic ChannelRhodopsin 2 variant (XXM2.0) to generate defined cytosolic Ca²⁺ transients in Arabidopsis root cells, revealing that these Ca²⁺ signatures suppress auxin‑induced membrane depolarization, Ca²⁺ spikes, and auxin‑responsive transcription, leading to reversible inhibition of cell division and elongation. This demonstrates that optogenetically imposed Ca²⁺ signals act as dynamic regulators of auxin sensitivity in roots.

auxin signaling calcium signaling optogenetics Arabidopsis root cell division inhibition

Calcium-dependent protein kinases participate in RBOH-mediated sustained ROS burst during plant immune cell death

Authors: Hino, Y., Yoshioka, M., Adachi, H., Yoshioka, H.

Date: 2025-09-01 · Version: 1
DOI: 10.1101/2025.09.01.672762

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study demonstrates that calcium-dependent protein kinases NbCDPK4 and NbCDPK5 directly phosphorylate the NADPH oxidase NbRBOHB at Ser‑123, enhancing sustained ROS production during effector-triggered immunity in Nicotiana benthamiana. Constitutively active CDPKs also upregulate NbRBOHB transcription, and phosphorylation of Ser‑123 is amplified by Ca2+ influx triggered by an autoactive helper NLR (NRC4). These results define a NbCDPK‑NbRBOHB signaling module that links NLR activation to prolonged ROS bursts in ETI.

effector-triggered immunity calcium-dependent protein kinases NADPH oxidase reactive oxygen species Nicotiana benthamiana

The improved auxin signalling via entire mutation enhances aluminium tolerance in tomato

Authors: Silva, R., Siqueira, J. A., Batista-Silva, W., Ferreira-Silva, M., Thiago, W., Vargas, J. R., Vilela, G., Robson, R., Neto, D. F. M., Azevedo, A. A., Ribeiro, C., Fernie, A., Nunes-Nesi, A., Araujo, W.

Date: 2025-09-01 · Version: 1
DOI: 10.1101/2025.08.29.673006

Category: Plant Biology

Model Organism: Tomato

AI Summary

The study investigates how auxin signaling influences aluminium tolerance using tomato mutants with altered auxin sensitivity, showing that the auxin‑hypersensitive entire mutant tolerates Al stress while the auxin‑reduced dgt mutant is more sensitive. Differences in reactive oxygen species accumulation and root transition‑zone cell differentiation correlate with distinct metabolic responses, suggesting that modifying auxin perception can enhance crop Al tolerance.

aluminium toxicity auxin signaling tomato mutants reactive oxygen species metabolite profiling

A copper-dependent, redox-based hydrogen peroxide perception in plants

Authors: Ishihama, N., Fukuda, Y., Shirano, Y., Takizawa, K., Hiroyama, R., Fujimoto, K. J., Ito, H., Nishimura, M., Yanai, T., Inoue, T., Shirasu, K., Laohavisit, A.

Date: 2025-07-25 · Version: 1
DOI: 10.1101/2025.07.22.666036

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study resolves the ectodomain structure of the plant-specific LRR‑RLK CARD1 (HPCA1) and reveals a surface‑exposed copper ion coordinated by histidines that is essential for hydrogen peroxide signaling. Combined structural, genetic, and biochemical analyses show that previously identified cysteine residues are not required for signal perception, establishing CARD1 as the first copper‑dependent redox receptor.

quinone signaling reactive oxygen species LRR‑RLK copper‑dependent receptor hydrogen peroxide signaling

Heat Stress and Soil Microbial Disturbance Influence Soybean Root Metabolite, Microbiome Profiles, and Nodulation

Authors: Elango, D., Van der Laan, L., Gholizadeh, S., Premarathne, M. D. G. P., Dutter, C. R., DePew, C., McDaniel, M., Singh, A. K.

Date: 2025-07-14 · Version: 1
DOI: 10.1101/2025.07.13.664636

Category: Plant Biology

Model Organism: Glycine max

AI Summary

The study investigated how native soil microbes affect heat tolerance in soybean (Glycine max) by comparing plants grown in natural versus microbiome‑disturbed soils under optimal and elevated temperatures. Using 16S rRNA and ITS sequencing alongside non‑targeted root metabolomics, the authors found significant shifts in bacterial and fungal communities, suppressed nodule‑forming bacteria, and altered root metabolites that correlated with reduced nodulation efficiency under heat stress. Integrated multi‑omics analyses linked microbial composition to metabolite profiles and nitrogen‑fixation traits, highlighting a coordinated response of the root physiological system to combined heat and microbiome perturbations.

heat stress rhizosphere microbiome soybean root metabolomics nitrogen fixation

The secreted redox sensor roGFP2-Orp1 reveals oxidative dynamics in the plant apoplast

Authors: Ingelfinger, J., Zander, L., Seitz, P. L., Trentmann, O., Tiedemann, S., Sprunck, S., Dresselhaus, T., Meyer, A. J., Müller-Schüssele, S. J.

Date: 2025-07-09 · Version: 2
DOI: 10.1101/2025.01.10.632316

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study evaluated the genetically encoded redox biosensor roGFP2-Orp1 for monitoring extracellular redox dynamics in diverse land plants, revealing that re‑oxidation rates in the apoplast differ between Physcomitrium patens and Arabidopsis thaliana and are accelerated by immune activation. Comparisons across tip‑growing cells showed no intracellular redox gradient but a partially reduced extracellular sensor in Nicotiana tabacum pollen tubes, indicating species‑ and cell‑type‑specific oxidative processes.

reactive oxygen species apoplastic redox dynamics roGFP2-Orp1 biosensor immune signaling plant model species
Previous Page 3 of 7 Next