Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 24 Papers

Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming

Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.

Date: 2025-07-09 · Version: 1
DOI: 10.1101/2025.07.08.663752

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.

Enterobacter sp. SA187 elevated CO2 Arabidopsis thaliana phytohormone signaling transcriptomics

Secretory carrier membrane proteins assist with aquaporin trafficking in Arabidopsis.

Authors: Jiang, Q., Vandorpe, M., fox, a. R., Vermeersch, M., Mylle, E., Cuadrado, A. F., Kraus, J., Liu, H., Eeckhout, D., Navarre, C., Courtoy, A., Jacobs, T. B., Dragwidge, J. M., De Smet, I., Pleskot, R., Chaumont, F., Van Damme, D.

Date: 2025-07-06 · Version: 1
DOI: 10.1101/2025.07.03.662988

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated the five Arabidopsis SCAMP proteins, focusing on SCAMP5, and identified conserved tyrosine and NPF motifs that mediate anterograde transport and endocytosis, respectively. SCAMPs were shown to dimerize at the plasma membrane and endosomes, interact with plasma‑membrane aquaporins, and their loss (triple and quintuple mutants) conferred mild developmental delay but increased drought tolerance, likely via altered PIP trafficking or stability.

SCAMP proteins Arabidopsis thaliana aquaporins (PIPs) drought tolerance protein trafficking

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis

Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.

Date: 2025-06-23 · Version: 1
DOI: 10.1101/2025.06.19.660594

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.

heat stress acquired thermotolerance heat stress memory multi-omics Arabidopsis thaliana

Non-Thermal Plasma Activated Water is an Effective Nitrogen Fertilizer Alternative for Arabidopsis thaliana

Authors: Kizer, J. J., Robinson, C. D., Lucas, T., Shannon, S., Hernandez, R., Stapelmann, K., Rojas-Pierce, M.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.12.659237

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared two plasma‑activated water (PAW) solutions with different H₂O₂ levels, produced by a radio‑frequency glow discharge, on Arabidopsis thaliana growth and stress responses. PAW lacking detectable H₂O₂ promoted seedling growth and induced nitrogen‑assimilation genes, while H₂O₂‑containing PAW did not affect growth but enhanced root performance under heat stress; mature plants fertilized with H₂O₂‑free PAW performed comparably to nitrate controls. These results indicate PAW can replace NO₃⁻ fertilizers provided H₂O₂ levels are carefully managed.

plasma activated water hydrogen peroxide reactive oxygen species nitrogen uptake heat stress

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

m6A RNA methylation attenuates thermotolerance in Arabidopsis

Authors: Shekhawat, K., Sheikh, A., Nawaz, K., Fatima, A., Alzayed, W., Nagaranjan, A. P., Hirt, H.

Date: 2025-05-23 · Version: 1
DOI: 10.1101/2025.05.22.655480

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that N6‑methyladenosine (m6A) RNA methylation acts as a negative regulator of thermotolerance in Arabidopsis thaliana, with loss of m6A increasing heat‑responsive gene expression and mRNA stability. Heat shock triggers a transient reduction of m6A levels, which is linked to enrichment of the H3K4me3 histone mark at target loci, enhancing transcription of heat shock proteins. These findings reveal a coordinated interplay between RNA methylation and chromatin modifications that fine‑tunes the plant heat stress response.

heat stress m6A RNA methylation thermotolerance Arabidopsis thaliana H3K4me3 histone modification

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

Integrative analysis of plant responses to a combination of water deficit, heat stress and eCO2 reveals a role for OST1 and SLAH3 in regulating stomatal responses

Authors: Pelaez-Vico, M. A., Sinha, R., Ghani, A., Lopez-Climent, M. F., Joshi, T., Fritschi, F. B., Zandalinas, S. I., Mittler, R.

Date: 2025-05-11 · Version: 1
DOI: 10.1101/2025.05.07.652739

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis thaliana integrates physiological, genetic, hormonal, and transcriptomic responses to combined water deficit, heat stress, and elevated CO2. Results show that stomatal aperture under these complex stress combinations is governed by a specific set of regulators, including nitric oxide, OPEN STOMATA 1, and the SLAH3 anion channel, distinct from those active under simpler stress conditions. This reveals a hierarchical stomatal stress code that could inform future research on plant resilience to global change.

Global Change Factor combination stomatal aperture regulation Arabidopsis thaliana water deficit heat stress

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture
Previous Page 2 of 3 Next