Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 6 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

Developing a Molecular Toolkit to ENABLE all to apply CRISPR/Cas9-based Gene Editing in planta

Authors: Abate, B. A., Hahn, F., Chirivi, D., Betti, C., Fornara, F., Molloy, J. C., Krainer, K. M. C.

Date: 2025-11-09 · Version: 1
DOI: 10.1101/2025.11.09.687425

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.

CRISPR/Cas9 plant gene editing low‑cost cloning Global South agriculture ENABLE(R) toolkit

Comparative gene regulatory network mapping of Brassicaceae members with differential drought tolerance

Authors: Pandiarajan, R., Lin, C.-W., Sauer, M., Rothballer, S. T., Marin-de la Rosa, N., Schwehn, P., Papadopoulou, E., Mairhormann, B., Falter-Braun, P.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.24.668636

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study mapped drought‑responsive gene regulatory networks in Arabidopsis thaliana, its tolerant relative Arabidopsis lyrata, and Eutrema salsugineum using yeast one‑hybrid screens of orthologous promoters, revealing higher network connectivity and specific TF‑promoter interactions in the tolerant species. Notable findings include an Esa‑specific expansion of bZIP interactions, differential ABA‑signalling edges, and the identification of ASIL2 as a novel stress‑responsive factor, providing a comparative framework for improving crop drought tolerance.

drought tolerance gene regulatory network Brassicaceae transcription factor interactions ABA signaling

The secreted redox sensor roGFP2-Orp1 reveals oxidative dynamics in the plant apoplast

Authors: Ingelfinger, J., Zander, L., Seitz, P. L., Trentmann, O., Tiedemann, S., Sprunck, S., Dresselhaus, T., Meyer, A. J., Müller-Schüssele, S. J.

Date: 2025-07-09 · Version: 2
DOI: 10.1101/2025.01.10.632316

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study evaluated the genetically encoded redox biosensor roGFP2-Orp1 for monitoring extracellular redox dynamics in diverse land plants, revealing that re‑oxidation rates in the apoplast differ between Physcomitrium patens and Arabidopsis thaliana and are accelerated by immune activation. Comparisons across tip‑growing cells showed no intracellular redox gradient but a partially reduced extracellular sensor in Nicotiana tabacum pollen tubes, indicating species‑ and cell‑type‑specific oxidative processes.

reactive oxygen species apoplastic redox dynamics roGFP2-Orp1 biosensor immune signaling plant model species

Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases

Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.

Date: 2025-04-30 · Version: 1
DOI: 10.1101/2025.04.26.650795

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.

cotton fiber development polysaccharide composition glycome profiling transcriptomics glycosyltransferases