Integrative comparative transcriptomics using cultivated and wild rice reveals key regulators of developmental and photosynthetic progression along the rice leaf developmental gradient
Authors: Jathar, V., Vivek, A., Panda, M. K., Daware, A. V., Dwivedi, A., Rani, R., Kumar, S., Ranjan, A.
The study performed comparative gene expression profiling across four rice accessions—from shoot apical meristem to primordia stage P5—to delineate developmental and photosynthetic transitions in leaf development. By integrating differential expression and gene regulatory network analyses, the authors identified stage-specific regulatory events and key transcription factors, such as RDD1, ARID2, and ERF3, especially in the wild rice Oryza australiensis, offering a comprehensive framework for optimizing leaf function.
The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.