Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.
CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The study provides a comprehensive genome-wide catalog and single‑cell expression atlas of the carbonic anhydrase (CA) gene family in maize, identifying 18 CA genes across α, β, and γ subfamilies and detailing their structural and regulatory features. Phylogenetic, synteny, promoter motif, bulk tissue RNA‑seq, and single‑cell RNA‑seq analyses reveal distinct tissue and cell‑type specific expression patterns, highlighting β‑CAs as key players in C4 photosynthesis and γ‑CAs in ion/pH buffering, and propose cell‑type‑specific CA genes as targets for improving stress resilience.
The study integrated genetic architecture derived from maize GWAS into phenotypic simulations of hybrid populations, using ≥200 top GWAS hits and adjusting marker effect sizes, which increased the correlation between simulated and empirical trait data across environments (r = 0.397–0.915). These informed simulations produced realistic trait distributions and genomic prediction results that closely matched empirical observations, demonstrating improved utility for digital breeding programs.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.
The study compared physiological, ion‑balance, and metabolic responses of two maize inbred lines—salt‑sensitive C68 and salt‑tolerant NC326—under salinity stress. Untargeted metabolomics identified 56 metabolites and, together with genetic analysis, linked 10 candidate genes to key protective metabolites, revealing constitutive and inducible mechanisms of salt tolerance.
The study models maize flowering time plasticity using a physiological reaction norm derived from multi-environment trial data, revealing genotype-specific differences in temperature-driven development and photoperiod perception. It introduces an envirotyping metric that shows genotypes can experience markedly different photoperiods even within the same environment, and demonstrates distinct adaptive strategies between tropical and temperate germplasm.
The study generated a temporal physiological and metabolomic map of leaf senescence in diverse maize inbred lines differing in stay‑green phenotype, identifying 84 metabolites associated with senescence and distinct metabolic signatures between stay‑green and non‑stay‑green lines. Integration of metabolite data with genomic information uncovered 56 candidate genes, and reverse‑genetic validation in maize and Arabidopsis demonstrated conserved roles for phenylpropanoids such as naringenin chalcone and eriodictyol in regulating senescence.