Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Barley (Hordeum vulgare) maintains tricarboxylic acid cycle activity without invoking the GABA shunt under salt stress

Authors: Bandehagh, A., Taylor, N. L.

Date: 2025-11-08 · Version: 1
DOI: 10.1101/2025.11.06.687118

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.

salinity stress mitochondrial respiration tricarboxylic acid cycle metabolomics proteomics

Golden Promise-rapid, a fast-cycling barley genotype with high transformation efficiency

Authors: Buchmann, G., Haraldsson, E. B., Schüller, R., Rütjes, T., Walla, A. A., von Korff Schmising, M., Liu, S.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.31.685778

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.

Golden Promise Ppd-H1 speed breeding CRISPR/Cas9 transformation efficiency