Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 17 Papers

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana

Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.

Date: 2025-03-31 · Version: 2
DOI: 10.1101/2025.01.08.631880

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.

Arabidopsis thaliana codon usage gene expression DNA methylation ribosome profiling

Multilevel analysis of response to plant growth promoting and pathogenic bacteria in Arabidopsis roots and the role of CYP71A27 in this response

Authors: Koprivova, A., Ristova, D., Berka, M., Berkova, V., Türksoy, G. M., Andersen, T. G., Westhoff, P., Cerny, M., Kopriva, S.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.26.645393

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.

CYP71A27 plant‑microbe interaction Pseudomonas fluorescens CH267 Burkholderia glumeae PG1 transcriptomics

Transcription factors instruct DNA methylation patterns in plant reproductive tissues

Authors: Xu, G., Chen, Y., Wang, F., Li, E., Law, J.

Date: 2025-02-23 · Version: 1
DOI: 10.1101/2025.02.21.639562

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that a set of REPRODUCTIVE MERISTEM (REM) transcription factors, termed RIMs, are essential for directing RNA‑directed DNA methylation (RdDM) to CLSY3 targets in a sex‑specific manner in Arabidopsis reproductive tissues. Disruption of RIM DNA‑binding domains or their target motifs abolishes RdDM at these loci, demonstrating that genetic cues can guide de novo methylation patterns.

DNA methylation RNA‑directed DNA methylation (RdDM) REPRODUCTIVE MERISTEM transcription factors sex‑specific epigenetic regulation Arabidopsis thaliana

Arabidopsis REM transcription factors and GDE1 shape the DNA methylation landscape through the recruitment of RNA Polymerase IV transcription complexes.

Authors: Wu, Z., Xue, Y., Wang, S., Shih, Y.-H., Zhong, Z., Feng, S., Draper, J., Lu, A., Sha, J., Li, L., Wohlschlegel, J., Wu, K., Jacobsen, S. E.

Date: 2025-02-23 · Version: 1
DOI: 10.1101/2025.02.21.639493

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies four Arabidopsis REM transcription factors (VDD, VAL, REM12, REM13) that bind specific DNA sequences and, together with GDE1, recruit RNA polymerase IV to produce 24‑nt siRNAs that direct DNA methylation at designated loci. Loss of GDE1 causes Pol IV complexes to relocalize to sites bound by REM8, indicating that REM proteins provide sequence‑specific cues for epigenetic patterning.

DNA methylation 24‑nt siRNA REM transcription factors RNA polymerase IV Arabidopsis

Transcriptomic insights into the role of miR394 in the regulation of flowering time in Arabidopsis thaliana

Authors: Belen, F., Bernardi, Y., Reutemann, A., Vegetti, A., Dotto, M. C.

Date: 2025-02-20 · Version: 1
DOI: 10.1101/2025.02.15.638417

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.

miR394 flowering time Arabidopsis thaliana transcriptomics lncRNA
Previous Page 2 of 2