Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 50 Papers

Barley (Hordeum vulgare) maintains tricarboxylic acid cycle activity without invoking the GABA shunt under salt stress

Authors: Bandehagh, A., Taylor, N. L.

Date: 2025-11-08 · Version: 1
DOI: 10.1101/2025.11.06.687118

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.

salinity stress mitochondrial respiration tricarboxylic acid cycle metabolomics proteomics

Systematic Analysis of the EXO70 Gene Family in Kiwifruit Species: Evolutionary Selection and Potential Functions in Plant Immunity

Authors: Cui, W., DENG, C. H., Yoon, M. H., Zarsky, V., Rikkerink, E. H. A.

Date: 2025-10-28 · Version: 1
DOI: 10.1101/2025.10.28.684437

Category: Plant Biology

Model Organism: Actinidia spp.

AI Summary

A genome-wide survey identified 217 EXO70 genes across five kiwifruit (Actinidia spp.) species, classifying them into three subfamilies and nine clades and revealing lineage‑specific expansions, especially in EXO70C, EXO70E, and EXO70H. Functional assays demonstrated that kiwifruit EXO70B1 interacts with the immune hub protein RIN4_1, suggesting a conserved EXO70‑RIN4 module in plant immunity. The study provides a foundational resource for exploring EXO70‑mediated disease resistance in kiwifruit.

EXO70 gene family Actinidia vesicle trafficking plant immunity RIN4 interaction

Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)

Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.

Date: 2025-10-21 · Version: 1
DOI: 10.1101/2025.10.20.683360

Category: Plant Biology

Model Organism: Pinus nigra

AI Summary

The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.

drought tolerance Pinus nigra metabolomics transcriptomics phenotyping

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis

In-depth phenotyping reveals unexpected floral trait variation in Mimulus cardinalis across a range-wide latitudinal gradient

Authors: Neequaye, M., Kennedy, E. B., Gunn, H., Wenzell, K. E., Byers, K. J. R. P.

Date: 2025-10-05 · Version: 1
DOI: 10.1101/2025.10.03.680188

Category: Plant Biology

Model Organism: Mimulus cardinalis

AI Summary

The study examined five geographically diverse accessions of the hummingbird‑pollinated monkeyflower Mimulus cardinalis, revealing extensive variation in floral morphology, nectar composition, pigment biochemistry, and scent that influence pollinator perception. Integrating metabolomics, morphology, transcriptomics, and whole‑genome sequencing, the authors identified genetic differences underlying the independent evolution of yellow flowers at range edges. These findings highlight how climate, pollinator interactions, and multi‑trait diversification drive early stages of floral divergence.

Mimulus cardinalis floral trait variation pollinator-mediated selection metabolomics genomic analysis

Cellular energy sensor SnRK1 suppresses salicylic acid-dependent and -independent defenses and bacterial resistance in Arabidopsis

Authors: Jie, L., Sanagi, M., Yasuda, S., Yamada, K., Ejima, S., Sugisaki, A., Takagi, J., Nomoto, M., Xin, X., Tada, Y., Saijo, Y., Sato, T.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.10.01.679707

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.

SnRK1 salicylic acid signaling plant immunity energy status high humidity

Candidatus Phytoplasma-induced Retrogressive Morphogenesis in Sesame (Sesamum indicum L.): Tissue-Specific Metabolic and Transcriptomic Reprogramming

Authors: Banerjee, S., Gangopadhyay, G.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.09.29.679221

Category: Plant Biology

Model Organism: Sesamum indicum

AI Summary

Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.

phytoplasma infection Sesamum indicum metabolomics transcriptomics tissue-specific response

A Multi-lensed Comparative Analysis of Select Secondary Metabolites Produced by Kale, Brassica oleracea, in Simulated Microgravity Versus Gravity Conditions

Authors: Osano, A., Dill, R., Li, Y., Yan, J., Ray, S., Ude, G., Iro, A.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.09.29.679299

Category: Plant Biology

Model Organism: Kale (Brassica oleracea var. acephala)

AI Summary

The study examined how simulated microgravity, using a 2-D clinostat, influences the metabolomic profile of the Starbor Kale (F1) cultivar, focusing on flavonoid content. Proton NMR revealed increased aromatic peaks, and HPTLC showed enhanced banding in medium- and high-polarity extracts, indicating elevated secondary metabolite production under microgravity conditions. These findings suggest kale is a promising candidate for space-based cultivation to mitigate astronaut health risks.

microgravity flavonoids metabolomics 1H NMR HPTLC

A Key Role for S-Nitrosylation in Immune Regulation and Development in the Liverwort Marchantia polymorpha

Authors: Goodrich, J.

Date: 2025-09-30 · Version: 1
DOI: 10.1101/2025.09.29.679193

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.

Nitric oxide S-nitrosylation GSNOR Marchantia polymorpha plant immunity

PHO2 suppresses arbuscular mycorrhizal symbiosis in high phosphate conditions

Authors: Birch, S., Perryman, S., Ellison, E., Foreman, N., Mekjan, N., Williams, A., Bate-Weldon, M., Ralfs, T., Pucker, B., Whiting, M., Hope, M. S., Wallington, E., Field, K., Choi, J.

Date: 2025-09-05 · Version: 1
DOI: 10.1101/2025.09.03.673468

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identifies the rice E2 ubiquitin‑conjugating enzyme PHO2 as a key negative regulator of arbuscular mycorrhizal (AM) colonisation under high phosphate conditions. pho2 mutants in Oryza sativa (and Nicotiana benthamiana) maintain AM fungal entry and exhibit enhanced direct and symbiotic phosphate accumulation, linked to sustained expression of AM‑related genes despite phosphate sufficiency.

Arbuscular mycorrhizal symbiosis Phosphate starvation response PHO2 ubiquitin‑conjugating enzyme Oryza sativa Phosphate accumulation
Previous Page 2 of 5 Next