Latest 3 Papers

Dynamic changes to the plastoglobule lipidome and proteome in heat-stressed maize

Authors: Devadasu, E., Susanto, F. A., Schilmiller, A. L., Johnny, C., Lundquist, P. K.

Date: 2025-06-19 · Version: 1
DOI: 10.1101/2025.06.13.659543

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.

heat stress plastoglobules lipid composition Zea mays proteomics

High-resolution transcriptional atlas of growing maize shoot organs throughout plant development under well-watered and drought conditions

Authors: Zhang, J., Verbraeken, L., Sprenger, H., Mertens, S., Wuyts, N., Cannoot, B., De Block, J., Demuynck, K., Natran, A., Maleux, K., Merchie, J., Crafts-Brandner, S., Vogel, J., Bruce, W., Inze, D., Maere, S., Nelissen, H.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.12.642568

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study mapped the macroscopic and cellular development of maize leaves and internodes, revealing a shared growth design with organ‑specific timing. Using high‑resolution spatiotemporal transcriptome profiling of 272 tissue samples under well‑watered and drought conditions, the authors generated a searchable expression atlas and identified conserved and organ‑specific gene regulatory patterns, including genes linked to leaf angle and vascular development. This resource advances understanding of shoot organ development and drought response for targeted trait engineering in maize.

Zea mays leaf and internode development drought stress spatiotemporal transcriptome atlas gene regulatory networks

Temporal analysis of physiological phenotypes identifies novel metabolic and genetic underpinnings of senescence in maize

Authors: Brar, M. S., Kumar, R., Kunduru, B., McMahan, C. S., Tharayil, N., Sekhon, R. S.

Date: 2025-03-12 · Version: 1
DOI: 10.1101/2025.03.07.641920

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study generated a temporal physiological and metabolomic map of leaf senescence in diverse maize inbred lines differing in stay‑green phenotype, identifying 84 metabolites associated with senescence and distinct metabolic signatures between stay‑green and non‑stay‑green lines. Integration of metabolite data with genomic information uncovered 56 candidate genes, and reverse‑genetic validation in maize and Arabidopsis demonstrated conserved roles for phenylpropanoids such as naringenin chalcone and eriodictyol in regulating senescence.

leaf senescence staygreen metabolomics phenylpropanoids maize