The study investigates autophagy’s protective role against cadmium stress in Arabidopsis thaliana by comparing wild-type, atg5 and atg7 autophagy-deficient mutants, and ATG5/ATG7 overexpression lines. Cadmium exposure triggered autophagy, shown by ATG8a-PE accumulation, GFP-ATG8a fluorescence and ATG gene up-regulation, with atg5 mutants displaying heightened Cd sensitivity and disrupted metal ion homeostasis, whereas overexpression had limited impact. Genotype-specific differences between Col-0 and Ws backgrounds were also observed.
The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
Stress-dependent responses of grapevine wood and fungal pathogen activity under esca and drought
Authors: Chambard, M., Cantu, D., Bortolami, G., Dell'Acqua, N., Ferrer, N., Gambetta, G., Garcia, J., Gastou, P., Massonnet, M., Moretti, S., Rochepeau, A., Petriacq, P., Foulongne-Oriol, M., Delmas, C. E. L.
The study used wood metatranscriptomics, metabolomics, and metabarcoding to compare grapevine (Vitis vinifera) responses to drought and esca leaf symptom expression, revealing distinct but overlapping transcriptomic and metabolic signatures, including activation of phenylpropanoid and stilbenoid pathways. Drought reduced esca symptom expression, associated with decreased abundance of the wood‑decay fungus Fomitiporia mediterranea and altered fungal virulence factor expression, while increasing the relative abundance and anti‑oxidative gene expression of Phaeomoniella chlamydospora.
The study investigated whether clonal offspring of Festuca rubra inheriting drought or methyl jasmonate (MeJA) exposure exhibit transgenerational stress memories that enhance tolerance to subsequent drought. Using a factorial experiment, untargeted LC‑MS metabolomics combined with morpho‑physiological assessments revealed that combined drought and MeJA memories generate novel metabolic and physiological responses, improving water conservation and photosynthetic performance. These findings highlight a layered, interactive memory system that can be leveraged to prime drought resilience across generations.
A dual component system instructs membrane hydrolysis during the final stages of plant autophagy
Authors: Castets, J., Buridan, M., Toboso Moreno, I., Sanchez de Medina Hernandez, V., Gomez, R. E., Dittrich-Domergue, F., Lupette, J., Chambaud, C., Pascal, S., Ibrahim, T., Bozkurt, T. O., Dagdas, Y., Domergue, F., Joubes, J., Minina, A. E. A., Bernard, A.
The study identifies the Arabidopsis phospholipases LCAT3 and LCAT4 as essential components that hydrolyze membranes of autophagic bodies within the vacuole, a critical step for autophagy completion. Double mutants lacking both enzymes accumulate autophagic bodies and display diminished autophagic activity, while in vivo reconstitution shows LCAT3 initiates membrane hydrolysis, facilitating LCAT4’s function.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
The study conducted tissue-specific metabolomic profiling of leaf, calyx, and fruit surfaces across 29 Physalis species, revealing extensive acylsugar diversity with up to 323 unique structures, many accumulated on fruit surfaces. Hierarchical clustering and phylogenetic analyses showed that acylsugar profiles do not align with taxonomic relationships, and functional assays of ASAT1 enzymes from three species demonstrated broad substrate specificity that likely drives structural variation. These findings highlight fruit-localized acylsugars as potential targets for engineering crop resilience.
The study examined soybean (Glycine max) responses to simultaneous drought and Asian soybean rust infection using combined transcriptomic and metabolomic analyses. Weighted Gene Co-expression Network Analysis identified stress-specific gene modules linked to metabolites, while Copula Graphical Models uncovered sparse, condition‑specific networks, revealing distinct molecular signatures for each stress without overlapping genes or metabolites. The integrative approach underscores a hierarchical, modular defense architecture and suggests targets for breeding multi‑stress resilient soybeans.
Introducing furanocoumarin biosynthetic genes in tomato results in coumarins accumulation and impacted growth
Authors: Bouille, A., Villard, C., Galati, G., Roumani, M., Fauvet, A., Grosjean, J., Hoengenaert, L., Boerjan, W., Ralph, J., Hilliou, F., Robin, C., Hehn, A., Larbat, R.
The study engineered the linear furanocoumarin pathway in tomato by integrating four biosynthetic genes, aiming to produce psoralen, but instead generated coumarins such as scopoletin. Morphophysiological, metabolomic, and transcriptomic analyses revealed that even low levels of these coumarins can influence plant growth and physiology, highlighting both benefits and costs of coumarin accumulation in crops.
ATG8i Autophagy activation is mediated by cytosolic Ca2+ under osmotic stress in Arabidopsis thaliana
Authors: Castillo-Olamendi, L., Gutierrez-Martinez, J., Jimenez-Nopala, G., Galindo, A., Barrera-Ortiz, S., Rosas-Santiago, P., Cordoba, E., Leon, P., Porta, H.
The study examined how osmotic stress and cytosolic Ca²⁺ signaling regulate autophagy in plants by monitoring the dynamics of RFP‑tagged ATG8i. Both stimuli altered the accumulation of RFP‑ATG8i‑labeled autophagosomes in an organ‑specific way, and colocalization with the ER marker HDEL indicated that ATG8i participates in ER‑phagy during stress.