Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 48 Papers

Root phenolics as potential drivers of preformed defenses and reduced disease susceptibility in a paradigm bread wheat mixture

Authors: Mathieu, L., Chloup, A., Marty, S., Savajols, J., Paysant-Le Roux, C., Launay-Avon, A., Martin, M.-L., Totozafy, J.-C., Perreau, F., Rochepeau, A., Rouveyrol, C., Petriacq, P., Morel, J.-B., Meteignier, L.-V., Ballini, E.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.13.699261

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.

root-mediated interactions bread wheat Septoria tritici blotch transcriptomics metabolomics

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

Universal modules for decoding amplitude and frequency of Ca2+ signals in plants

Authors: Vergara-Valladares, F., Rubio-Melendez, M. E., Charpentier, M., Michard, E., Dreyer, I.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.13.694100

Category: Plant Biology

Model Organism: General

AI Summary

The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.

calcium signaling EF‑hand Ca2+ binding protein decoding modules plant calcium sensors signal amplitude and frequency

Molecular response of the diatom Coscinodiscus granii and its co-occurring dictyochophyte during Lagenisma coscinodisci parasite infection

Authors: Orvain, C., Bertrand, L., Moussy, A., Porcel, B. M., Vallet, M., Carradec, Q., Thurotte, A.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.10.10.681168

Category: Plant Biology

Model Organism: Coscinodiscus granii

AI Summary

The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.

diatom‑parasite interactions oomycete effectors Coscinodiscus granii transcriptomics metabolomics

Ca2+-driven nanodomain enrichment and plasma membrane proteome remodelling enable bacterial outer membrane vesicle perception in rice

Authors: Mondal, I., Das, H., Behera, S.

Date: 2025-12-02 · Version: 2
DOI: 10.1101/2025.09.17.676730

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study reveals that rice perceives Xanthomonas oryzae pv. oryzae outer membrane vesicles through a rapid calcium signal that triggers plasma‑membrane nanodomain formation and the re‑organisation of defence‑related proteins, establishing an early immune response. Without this Ca2+ signal, OMVs are not recognized and immunity is weakened.

Xanthomonas oryzae pv. oryzae outer membrane vesicles calcium signaling plasma membrane nanodomains proteomics

Chloroplast-mitochondria synergy modulates responses to iron limitation in two Thalassiosira diatom species

Authors: ANGULO, J., Uwizeye, C., Albanese, P., Menneteau, M., Ravanel, S., Jouneau, P.-H., Finazzi, G., Courtois, F.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691171

Category: Plant Biology

Model Organism: Thalassiosira oceanica; Thalassiosira pseudonana

AI Summary

The study compares the iron-poor oceanic diatom Thalassiosira oceanica with the iron-rich coastal species T. pseudonana to uncover how diatoms adapt to low-iron conditions. Using photo‑physiological measurements, proteomic profiling, and focused ion beam scanning electron microscopy, the researchers show that each species remodels chloroplast compartments and exhibits distinct mitochondrial architectures to maintain chloroplast‑mitochondrial coupling under iron limitation.

iron limitation diatoms Thalassiosira chloroplast-mitochondrial coupling proteomics

CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds

Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.

Date: 2025-11-28 · Version: 1
DOI: 10.1101/2025.11.25.690394

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.

CLPC2 microbial volatile compounds chloroplast CLP protease proteomics Arabidopsis thaliana

Discovery of pseudobaptigenin synthase, completing the (-)-maackiain biosynthetic pathway

Authors: Raytek, L. M., Liu, L., Bayen, S., Dastmalchi, M.

Date: 2025-11-19 · Version: 1
DOI: 10.1101/2025.11.18.689130

Category: Plant Biology

Model Organism: Trifolium pratense

AI Summary

The study integrated metabolomic and transcriptomic analyses of red clover (Trifolium pratense) roots infected with Fusarium oxysporum and Phoma medicaginis to identify candidate cytochrome P450 enzymes responsible for the methylenedioxy bridge formation in (-)-maackiain biosynthesis. Using co‑expression network analysis and phylogenetic screening, five P450 candidates were selected and screened in engineered Saccharomyces cerevisiae, revealing TpPbS/CYP76F319 as the enzyme catalyzing conversion of calycosin to pseudobaptigenin. This discovery enables reconstruction of the complete (-)-maackiain pathway for potential health and agricultural applications.

pterocarpans cytochrome P450 (-)-maackiain red clover metabolomics

Barley (Hordeum vulgare) maintains tricarboxylic acid cycle activity without invoking the GABA shunt under salt stress

Authors: Bandehagh, A., Taylor, N. L.

Date: 2025-11-08 · Version: 1
DOI: 10.1101/2025.11.06.687118

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.

salinity stress mitochondrial respiration tricarboxylic acid cycle metabolomics proteomics
Page 1 of 5 Next