Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
A novel pathosystem between Aeschynomene evenia and Aphanomyces euteiches reveals new immune components in quantitative legume root-rot resistance.
Authors: Baker, M., Martinez, Y., Keller, J., Sarrette, B., Pervent, M., Libourel, C., Le Ru, A., Bonhomme, M., Gough, C., Castel, B., ARRIGHI, J.-F., Jacquet, C.
The study establishes Aeschynomene evenia as a new model for dissecting legume immunity against the soilborne pathogen Aphanomyces euteiches and its relationship with Nod factor-independent symbiosis. Quantitative resistance was assessed through inoculation assays, phenotypic and cytological analyses, and RNA‑seq identified thousands of differentially expressed genes, highlighting immune signaling and specialized metabolism, with mutant analysis confirming dual‑function kinases that modulate resistance. Comparative transcriptomics with Medicago truncatula revealed conserved and unique immune responses, positioning the A. evenia–A. euteiches system as a valuable platform for exploring quantitative resistance and symbiosis integration.
The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.
The study examined how dual‑purpose hemp (Cannabis sativa) adjusts to different phosphate levels, showing that flower biomass is maintained unless phosphate is completely removed. Integrated physiological measurements and transcriptomic profiling revealed that phosphate is reallocated to flowers via glycolytic bypasses and organic phosphate release, while key regulatory genes followed expected patterns but did not suppress uptake at high phosphate, leading to nitrate depletion that limits growth.
The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.
Using ten Phaeodactylum tricornutum mutant strains with graded constitutive Lhcx1 expression, the study links NPQ induction under high light to physiological outcomes (oxidized QA, increased cyclic electron flow) and extensive transcriptomic reprogramming, affecting nearly half the genome. The approach demonstrates that higher NPQ mitigates PSII damage, boosts ATP production for repair, and drives distinct gene regulatory networks, providing a model framework for dissecting photosynthetic and gene expression integration.
The study establishes a tractable system using the large bloom-forming diatom Coscinodiscus granii and its natural oomycete parasite Lagenisma coscinodisci, enabling manual isolation of single host cells and stable co-cultures. High‑quality transcriptomes for both partners were assembled, revealing diverse oomycete effectors and a host transcriptional response involving proteases and exosome pathways, while also profiling the co‑occurring heterotrophic flagellate Pteridomonas sp. This tripartite platform provides a unique marine model for dissecting molecular mechanisms of oomycete‑diatom interactions.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study integrated metabolomic and transcriptomic analyses of red clover (Trifolium pratense) roots infected with Fusarium oxysporum and Phoma medicaginis to identify candidate cytochrome P450 enzymes responsible for the methylenedioxy bridge formation in (-)-maackiain biosynthesis. Using co‑expression network analysis and phylogenetic screening, five P450 candidates were selected and screened in engineered Saccharomyces cerevisiae, revealing TpPbS/CYP76F319 as the enzyme catalyzing conversion of calycosin to pseudobaptigenin. This discovery enables reconstruction of the complete (-)-maackiain pathway for potential health and agricultural applications.