Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases
Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.
The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.
The study evaluated how acute heat stress affects early-stage rice seedlings, identifying a critical temperature threshold that impairs growth. Transcriptomic profiling of shoots and roots revealed ethylene‑responsive factors (ERFs) as central regulators, with ethylene and jasmonic acid acting upstream, and pre‑treatment with these hormones mitigated heat damage. These findings highlight ERF‑hormone interaction networks as targets for improving rice heat resilience.
Using the Euphorbia peplus genome, the authors performed organ‑specific transcriptomic profiling of the cyathium and combined it with gene phylogenies and dN/dS analysis to investigate floral‑development gene families. They found distinct SEP1 paralog expression, lack of E‑class gene duplications typical of other pseudanthia, and divergent expression patterns for CRC, UFO, LFY, AP3, and PI, suggesting unique developmental pathways in Euphorbia.
The study shows that heatwaves impair the ability of apple (Malus domestica) to mount ASM‑induced immunity against fire blight and apple scab, leading to a loss of protective gene expression. Transcriptomic analysis revealed a broad suppression of ASM‑regulated defense and other biological processes under high temperature, identifying thermo‑sensitive resistance and susceptibility marker genes. The findings highlight that elevated temperature both weakens plant defenses and creates a more favorable environment for pathogens.
The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.
The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.
The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.
The study examined how altering ethylene biosynthesis (ACO1) or perception (etr1.1) in a hybrid poplar (P. tremula × P. tremuloides T89) influences the assembly of root and shoot fungal and bacterial communities, using amplicon sequencing and confocal microscopy. Ethylene modulation had limited impact on the sterile plant metabolome but triggered distinct primary and secondary metabolic changes in microbe‑colonized plants, correlating with reduced fungal colonisation of shoots and increased root fungal colonisation, while arbuscular mycorrhizal fungi and bacterial communities were largely unchanged.
The study generated a temporal physiological and metabolomic map of leaf senescence in diverse maize inbred lines differing in stay‑green phenotype, identifying 84 metabolites associated with senescence and distinct metabolic signatures between stay‑green and non‑stay‑green lines. Integration of metabolite data with genomic information uncovered 56 candidate genes, and reverse‑genetic validation in maize and Arabidopsis demonstrated conserved roles for phenylpropanoids such as naringenin chalcone and eriodictyol in regulating senescence.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.