The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
In a two-year controlled-environment experiment, diploid and tetraploid individuals of wild-type and cultivar Marshall annual ryegrass (Lolium multiflorum) were grown under elevated CO2 (540 vs 800 ppm) and differing evapotranspiration regimes. Elevated CO2 increased total biomass by 44% across ploidy levels, and tetraploid wild-type plants matched the improved cultivar in growth and forage quality, indicating that chromosome manipulation and wild genetic resources can enhance climate resilience.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Using genome‑wide association studies in Arabidopsis thaliana, the authors identified the chromatin‑associated protein CDCA7 as a trans‑regulator that specifically controls CG methylation (mCG) and TE silencing. CDCA7 and its paralog CDCA7β bind the remodeler DDM1, modulating its activity without broadly affecting non‑CG methylation or histone variant deposition, and natural variation in CDCA7 regulatory sequences correlates with local ecological adaptation.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study shows that silencing of NOR2 rRNA genes in Arabidopsis thaliana depends primarily on CHH-context cytosine methylation, particularly mediated by CMT2 and the chromatin remodeler DDM1, rather than CG or CHG methylation. Comparative promoter analysis revealed a prevalence of CHH sites in plant rDNA promoters, explaining why CHH methylation mutants disrupt NOR2 silencing more strongly, while NOR2 loci are hyper‑methylated and more condensed than NOR4.