The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The first nested association mapping (NAM) population for outbreeding Italian ryegrass reveals candidate genes for seed shattering and related traits
Authors: Kiesbauer, J., Grieder, C., Sindelar, M., Schlatter, L. H., Ariza-Suarez, D., Yates, S., Stoffel-Studer, I., Copetti, D., Studer, B., Koelliker, R.
The study generated the first nested association mapping (NAM) population in the outcrossing forage grass Italian ryegrass (Lolium multiflorum) to investigate seed shattering and related traits, using ddRAD sequencing of 708 F2 individuals combined with whole-genome sequencing of 24 founders to obtain over 3 million SNPs for population structure, parentage, and GWAS analyses. Seven QTL were identified for seed shattering and other agronomic traits, leading to the discovery of candidate genes, including one associated with ripening pathways that explained 10% of phenotypic variance, demonstrating the utility of NAM for dissecting complex traits in outcrossing grasses.
In a two-year controlled-environment experiment, diploid and tetraploid individuals of wild-type and cultivar Marshall annual ryegrass (Lolium multiflorum) were grown under elevated CO2 (540 vs 800 ppm) and differing evapotranspiration regimes. Elevated CO2 increased total biomass by 44% across ploidy levels, and tetraploid wild-type plants matched the improved cultivar in growth and forage quality, indicating that chromosome manipulation and wild genetic resources can enhance climate resilience.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
The study examined how genetic variation among 181 wheat (Triticum aestivum) lines influences root endophytic fungal communities using ITS2 metabarcoding. Heritability estimates and GWAS identified 11 QTLs linked to fungal clade composition, highlighting genetic control of mycobiota, especially for biotrophic AMF. These findings suggest breeding can be used to modulate beneficial root-fungal associations.