The study employed a portable near‑infrared spectrometer to longitudinally monitor sugar and acid dynamics in individual berries of ten grapevine varieties over two seasons, calibrating the spectra against HPLC measurements using partial least squares regression. The resulting models accurately predicted glucose, fructose, and malic acid levels, revealing that single berries ripen about twice as fast as aggregates, highlighting a precise quantitative approach for assessing berry ripening under climate change.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
Simulating the Impacts of Climate Change on UH Manoa Lettuce (Lactuca sativa) Growth by Modifying Air Temperature, Soil Water Availability, and Atmospheric CO2 Concentration
Authors: Yos, N., Mora, C., Webster, K., McDowell, K.
The study evaluated the combined effects of elevated CO₂, temperature, and water availability on Lactuca sativa grown in controlled indoor chambers over 21 days, measuring biomass, mortality, and leaf nitrogen. Elevated CO₂ generally enhanced growth and survival, but high temperature and extreme water conditions reduced both, indicating that climate‑induced CO₂ increases may not offset heat and water stress on lettuce yield.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.
Salt stress strongly suppresses root growth in Festuca rubra while sparing shoot development. Transcriptome profiling identified over 68,000 differentially expressed genes, with up‑regulated genes enriched in methionine, melatonin, and suberin biosynthesis and down‑regulated genes involved in gibberellin, ABA, and sugar signaling, indicating extensive hormonal and metabolic reprogramming. Paradoxical regulation of gibberellin and ethylene pathways suggests a finely tuned balance between growth and stress responses.
The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
The study forecasts mid‑21st century warming effects on chilling accumulation and phenology of two rabbiteye blueberry cultivars (Vaccinium virgatum) using downscaled climate models and growth‑chamber experiments, finding a marked reduction in chilling hours and altered bud‑break timing despite continued frost risk. Logistic models derived from these data provide tools to predict phenological responses and guide adaptive cultivar selection.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.