Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Multi-year study on the effects of elevated CO2 in mature oaks unravels subtle metabolic adjustments but stable biotic stress resistance
Authors: Sanchez-Lucas, R., Raw, M., Datta, A., Hawkins, K., Brettle, D., Platt, E. A., Ullah, S., Hart, K., Mayoral, C., Stegner, M., Kranner, I., Hayward, S. A., Pastor, V., MacKenzie, A. R., Luna, E.
A long‑term FACE experiment exposing 180‑year‑old Quercus robur to +150 ppm CO₂ showed seasonal declines in powdery mildew and insect herbivory but no consistent change in biotic stress incidence. Metabolomic analyses revealed widespread shifts in amino acid, Coenzyme A, and redox pathways, indicating extensive metabolic plasticity without altered resistance to pathogens or herbivores.