The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
The study presents an optimized Agrobacterium-mediated transformation protocol for bread wheat that incorporates a GRF4‑GIF1 fusion to enhance regeneration and achieve genotype‑independent transformation across multiple cultivars. The approach consistently improves transformation efficiency while limiting pleiotropic effects, offering a versatile platform for functional genomics and gene editing in wheat.
Multi-year study on the effects of elevated CO2 in mature oaks unravels subtle metabolic adjustments but stable biotic stress resistance
Authors: Sanchez-Lucas, R., Raw, M., Datta, A., Hawkins, K., Brettle, D., Platt, E. A., Ullah, S., Hart, K., Mayoral, C., Stegner, M., Kranner, I., Hayward, S. A., Pastor, V., MacKenzie, A. R., Luna, E.
A long‑term FACE experiment exposing 180‑year‑old Quercus robur to +150 ppm CO₂ showed seasonal declines in powdery mildew and insect herbivory but no consistent change in biotic stress incidence. Metabolomic analyses revealed widespread shifts in amino acid, Coenzyme A, and redox pathways, indicating extensive metabolic plasticity without altered resistance to pathogens or herbivores.