Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.