Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study benchmarked over 20 web‑based gRNA on‑target efficiency prediction tools against an experimental plant CRISPR editing dataset, finding several machine‑learning based tools whose scores strongly correlated with observed InDel frequencies. Additionally, the performance of popular platforms such as CRISPOR and CRISPR‑P was assessed, offering guidance for improved gRNA design in plant genome editing.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Trichoderma afroharzianum behaves differently with respect to the host transcriptome and microbial communities under varying iron availability in pea plants
Authors: Kabir, A. H., Thapa, A., Ara Saiful, S. A., Talukder, S. K.
The study examined how the bioinoculant Trichoderma afroharzianum T22 influences Pisum sativum growth under iron-sufficient versus iron-deficient conditions, finding pronounced benefits—enhanced photosynthesis, Fe/N accumulation, and stress‑related gene expression—only during iron deficiency. RNA‑seq revealed distinct gene expression patterns tied to symbiosis, iron transport, and redox pathways, and microbiome profiling showed T22 reshapes the root bacterial community under deficiency, suggesting context‑dependent mutualism.
The study evaluates the use of single-cell RNA sequencing (scRNA-seq) data to predict plant metabolic pathway genes (MPGs) in Arabidopsis thaliana, comparing five multi-label machine‑learning algorithms against traditional bulk RNA‑seq approaches. scRNA‑seq generated co‑expression networks that, while different, yielded significantly higher MPG classification accuracy, especially when data were split by genetic background or tissue type, and deep learning outperformed classical methods. The authors conclude that scRNA‑seq offers superior predictive power and should be incorporated into future MPG discovery pipelines.
Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes
Authors: Bojdova, T., Hlouskova, L., Holusova, K., Svacina, R., Hribova, E., Ilikova, I., Thiel, J., Kim, G., Pleskot, R., Houben, A., Bartos, J., Karafiatova, M.
The study characterizes tissue-specific elimination of B chromosomes in Sorghum purpureosericeum during embryo development, identifying 28 candidate genes linked to this process. Integrated in situ visualization, genome sequencing, and transcriptomic analyses reveal that the B chromosome originates from multiple A chromosomes, harbors unique repeats, and expresses divergent kinetochore components that likely mediate its selective removal.
The study evaluated whether integrating genomic, transcriptomic, and drone-derived phenomic data improves prediction of 129 maize traits across nine environments, using both linear (rrBLUP) and nonlinear (SVR) models. Multi-omics models consistently outperformed single-omics models, with transcriptomic data especially enhancing cross‑environment predictions and capturing genotype‑by‑environment interactions. The results highlight the added value of combining transcriptomics and phenomics with genotypes for more accurate and generalizable trait prediction in maize.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
The study developed a molecular assay to identify Myrtle rust‑resistant Melaleuca quinquenervia individuals for restoration. Artificial inoculations were followed by whole‑genome sequencing of 492 seedlings and a GWAS that pinpointed SNP clusters in three chromosomal regions, including candidate R‑genes, which were refined into a 1,049‑SNP panel achieving a genomic prediction accuracy of R = 0.83.
Clathrin-coated vesicles are targeted for selective autophagy during osmotic stress.
Authors: dragwidge, j., Buridan, M., Kraus, J., Kosuth, T., Chambaud, C., Brocard, L., Yperman, K., Mylle, E., Vandorpe, M., Eeckhout, D., De Jaeger, G., Pleskot, R., Bernard, A., Van Damme, D.
The study identifies an autophagy pathway that degrades plasma membrane-derived clathrin-coated vesicles (CCVs) during hyperosmotic stress, helping maintain membrane tension as cell volume decreases. Using live imaging and correlative microscopy, the authors show that the TPLATE complex subunits AtEH1/Pan1 and AtEH2/Pan1 act as selective autophagy receptors by directly binding ATG8, thereby removing excess membrane under drought or salt conditions.