Simulating the Impacts of Climate Change on UH Manoa Lettuce (Lactuca sativa) Growth by Modifying Air Temperature, Soil Water Availability, and Atmospheric CO2 Concentration
Authors: Yos, N., Mora, C., Webster, K., McDowell, K.
The study evaluated the combined effects of elevated CO₂, temperature, and water availability on Lactuca sativa grown in controlled indoor chambers over 21 days, measuring biomass, mortality, and leaf nitrogen. Elevated CO₂ generally enhanced growth and survival, but high temperature and extreme water conditions reduced both, indicating that climate‑induced CO₂ increases may not offset heat and water stress on lettuce yield.
The study forecasts mid‑21st century warming effects on chilling accumulation and phenology of two rabbiteye blueberry cultivars (Vaccinium virgatum) using downscaled climate models and growth‑chamber experiments, finding a marked reduction in chilling hours and altered bud‑break timing despite continued frost risk. Logistic models derived from these data provide tools to predict phenological responses and guide adaptive cultivar selection.
Contrasting patterns of local adaptation and climate resilience across forest management regimes in Norway spruce (Picea abies): implications for reforestation practices under climate change
Authors: Eklöf, H., Bernhardsson, C., Ingvarsson, P. K.
The study compares neutral genetic diversity and adaptive differentiation between old-growth and recently planted Norway spruce (Picea abies) stands in northern Sweden, finding similar overall genetic diversity but stronger local adaptation signals in natural forests. Planted stands exhibit weaker adaptive variation and higher vulnerability to future climate change, underscoring the need to conserve adaptive genetic variation in forest management.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
The study applied non‑stationary generalized Pareto distributions, rooted in extreme value theory, to estimate how the risk of low yields for major crops changes over time under climate change. Analyses of global (1961‑2022) and Japanese (1948/1958‑2020) yield datasets revealed increasing low‑yield risk for most crops and regions, with only Japanese wheat showing a mitigating trend, and simulation tests confirmed the models' general accuracy, which depends on dataset size.
The study used comparative transcriptomics across Erysimum species to identify two 2‑oxoglutarate‑dependent dioxygenases, CARD5 and CARD6, responsible for the 14β‑ and 21‑hydroxylation steps in cardenolide biosynthesis in Erysimum cheiranthoides. Knockout mutants lacking these genes accumulated pathway intermediates, and transient expression in Nicotiana benthamiana confirmed their enzymatic functions, while structural modeling pinpointed residues linked to neofunctionalization.
Comparative transcriptomics uncovers plant and fungal genetic determinants of mycorrhizal compatibility
Authors: Marques-Galvez, J. E., de Freitas Pereira, M., Nehls, U., Ruytinx, J., Barry, K., Peter, M., Martin, F., Grigoriev, I. V., Veneault-Fourrey, C., Kohler, A.
The study used comparative and de‑novo transcriptomic analyses in poplar to uncover plant and fungal gene regulons that govern ectomycorrhizal (ECM) compatibility, distinguishing general fungal‑sensing responses from ECM‑specific pathways. Key findings include modulation of jasmonic acid‑related defenses, coordinated regulation of secretory and cell‑wall remodeling genes, and dynamic expression of the Common Symbiosis Pathway during early and mature symbiosis stages.
High radiosensitivity in the conifer Norway spruce (Picea abies) due to lesscomprehensive mobilisation of protection and repair responses compared to the radiotolerant Arabidopsis thaliana
Authors: Bhattacharjee, P., Blagojevic, D., Lee, Y., Gillard, G. B., Gronvold, L., Hvidsten, T. R., Sandve, S. R., Lind, O. C., Salbu, B., Brede, D. A., Olsen, J. E.
The study compared early protective, repair, and stress responses to chronic gamma irradiation in the radiosensitive conifer Norway spruce (Picea abies) and the radiotolerant Arabidopsis thaliana. Norway spruce exhibited growth inhibition, mitochondrial damage, and higher DNA damage at low dose rates, while Arabidopsis maintained growth, showed minimal organelle damage, and activated DNA repair and antioxidant genes even at the lowest dose rates. Transcriptomic analysis revealed that the tolerant species mounts a robust transcriptional response at low doses, whereas the sensitive species only responds at much higher doses.
The study used comparative transcriptomics to examine how Fusarium oxysporum isolates with different lifestyles on angiosperms regulate effector genes during infection of the non‑vascular liverwort Marchantia polymorpha. Core effector genes on fast core chromosomes are actively expressed in the bryophyte host, while lineage‑specific effectors linked to angiosperm pathogenicity are silent, and disruption of a compatibility‑associated core effector alters the expression of other core effectors, highlighting conserved fungal gene networks across plant lineages.
The study presents the first thermal performance curve for the duckweed Wolffia globosa, identifying an optimal constant growth temperature of ~32 °C and showing that projected mean temperature increases under a high‑emissions scenario would not significantly affect growth under constant conditions. However, simulated heat‑wave temperature fluctuations markedly reduce growth rates due to increased frond mortality, suggesting that while W. globosa can recover quickly, extreme temperature variability may limit its productivity.