The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.
The study examined 57 global accessions of the invasive hybrid Kalanchoe xhoughtonii and its parents, revealing extensive cytogenetic and genomic variation among morphotypes but identifying a single tetraploid genotype (morphotype A) that dominates worldwide. This genotype exhibits remarkable genetic uniformity, high phenotypic plasticity, and prolific vegetative propagation, illustrating how hybridization and polyploidy can drive rapid invasive success.