Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.