The study examined how Turnip mosaic virus (TuMV) infection reshapes root-associated bacterial and fungal communities in two Arabidopsis thaliana genotypes. TuMV markedly reduced bacterial diversity and altered community composition in a genotype‑specific manner, while fungal communities stayed stable; bacterial co‑occurrence networks later recovered and even increased in complexity, highlighting microbial resilience. These findings underscore virus‑driven selective filtering of bacterial root microbiota and the role of host genotype in mediating microbiome responses to viral stress.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
Trichoderma afroharzianum behaves differently with respect to the host transcriptome and microbial communities under varying iron availability in pea plants
Authors: Kabir, A. H., Thapa, A., Ara Saiful, S. A., Talukder, S. K.
The study examined how the bioinoculant Trichoderma afroharzianum T22 influences Pisum sativum growth under iron-sufficient versus iron-deficient conditions, finding pronounced benefits—enhanced photosynthesis, Fe/N accumulation, and stress‑related gene expression—only during iron deficiency. RNA‑seq revealed distinct gene expression patterns tied to symbiosis, iron transport, and redox pathways, and microbiome profiling showed T22 reshapes the root bacterial community under deficiency, suggesting context‑dependent mutualism.
Seed treatment with melatonin markedly improved root biomass, nodulation, nitrogen balance, and yield in three peanut genotypes, particularly Kainong 308. 16S rRNA amplicon sequencing revealed genotype‑ and compartment‑specific reshaping of bacterial communities, with enrichment of key Proteobacteria and more complex co‑occurrence networks that correlated with enhanced plant traits. These results highlight melatonin’s dual function as a plant bio‑stimulant and microbiome modulator.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
The study examined how plant‑derived benzoxazinoid metabolites influence interactions among root‑associated bacterial strains and between these bacteria and their plant host. Using both simple pairwise assays and more complex multi‑organism setups, the authors found that these chemicals modulate bacterial‑bacterial and bacterial‑plant interactions, altering plant defense, immunity, and sugar transport especially when bacterial inocula are present. The work highlights the role of the soil chemical legacy in shaping holobiont dynamics and demonstrates the utility of combining reductionist and holistic experimental approaches.
The study compares iron deficiency and drought tolerance between two soybean genotypes, Clark (tolerant) and Arisoy (sensitive), using multi‑omics analyses. Clark maintains iron homeostasis, higher antioxidant protein expression, and recruits beneficial root microbes (Variovorax, Paecilomyces) that support nutrient uptake and nodule function, while Arisoy shows impaired physiological and microbial responses. The findings identify host‑microbe interactions and specific molecular pathways as potential targets for breeding and microbiome‑based biofertilizers.
The study shows that drought triggers ABA accumulation and JA reduction in sorghum roots, accompanied by transcriptional activation of genes linked to mineral homeostasis, hormone signaling, and osmotic regulation, while Fe supplementation enhances ferritin expression and mitigates oxidative stress. Drought also diminishes root bacterial diversity but enriches beneficial taxa such as Burkholderia, whereas fungal diversity remains stable, and functional profiling reveals shifts toward phototrophy, methylotrophy, and nitrate reduction. These findings highlight ferritin’s protective role and suggest specific bacterial inoculants for improving sorghum drought resilience.
Transcriptome responses of two Halophila stipulacea seagrass populations from pristine and impacted habitats, to single and combined thermal and excess nutrient stressors, reveal local adaptive features and core stress-response genes
Authors: Nguyen, H. M., Yaakov, B., Beca-Carretero, P., Procaccini, G., Wang, G., Dassanayake, M., Winters, G., Barak, S.
The study examined transcriptomic responses of the tropical seagrass Halophila stipulacea from a pristine and an impacted site under single and combined thermal and excess nutrient stress in mesocosms. Combined stress caused greater gene reprogramming than individual stresses, with thermal effects dominating and the impacted population showing reduced plasticity but higher resilience. Core stress‑response genes were identified as potential early field indicators of environmental stress.