The study reveals that the thermosensor and circadian regulator ELF3 interacts with the PLT3 transcription factor in Arabidopsis root stem cell niches, forming subcellular condensates that sustain quiescent centre and columella stem cell fate. ELF3’s intrinsically disordered prion‑like domains drive condensate formation with PLT3, and PIF3/4 act as nuclear shuttles recruiting ELF3 to nuclear condensates, linking environmental cues to stem cell maintenance.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
Phylogenomic challenges in polyploid-rich lineages: Insights from paralog processing and reticulation methods using the complex genus Packera (Asteraceae: Senecioneae)
Authors: Moore-Pollard, E. R., Ellestad, P., Mandel, J.
The study examined how polyploidy, hybridization, and incomplete lineage sorting affect phylogenetic reconstructions in the genus Packera, evaluating several published paralog‑processing pipelines. Results showed that the choice of orthology and paralog handling methods markedly altered tree topology, time‑calibrated phylogenies, biogeographic histories, and detection of ancient reticulation, underscoring the need for careful methodological selection alongside comprehensive taxon sampling.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.