The genome of the vining fern Lygodium microphyllum highlights genomic and functional differences between life phases of an invasive plant
Authors: Pelosi, J., Davenport, R., Kuo, L.-Y., Gray, L. N., Dant, A. J., Kim, E. H., Li, F.-W., Dlugosch, K. M., Krabbenhoft, T. J., Barbazuk, W. B., Sessa, E. B.
The study presents a chromosome-level reference genome for the invasive fern Lygodium microphyllum and compares the transcriptomic and epigenomic profiles of its haploid gametophyte and diploid sporophyte phases, revealing differential regulation of developmental genes and similar methylation patterns across tissues. Base‑pair resolution methylome data and freezing‑stress experiments show that each life phase employs distinct molecular pathways for stress response, emphasizing the importance of considering both phases in invasive‑species management.
The study applied a CRISPR/Cas9 multiplex guide RNA strategy to delete entire open reading frames of four reproductive genes in Arabidopsis thaliana, achieving homozygous deletions already in the T1 generation with rates of 8.3–30%. Deletion efficiencies correlated with DeepSpCas9 prediction scores, and phenotypic analyses revealed unexpected effects of residual gene fragments on fertilization and seed development.
The study investigates the Arabidopsis ribosomal protein RPS6A and its role in auxin‑related root growth, revealing that rps6a mutants display shortened primary roots, fewer lateral roots, and defective vasculature that are not rescued by exogenous auxin. Cell biological observations and global transcriptome profiling show weakened auxin signaling and reduced levels of PIN auxin transporters in the mutant, indicating a non‑canonical function of the ribosomal subunit in auxin pathways.
The study demonstrates the implementation of CRISPR/Cas9-mediated targeted mutagenesis in the orphan crop grain amaranth (Amaranthus hypochondriacus) by editing genes of the betalain biosynthesis pathway using the CasCADE modular cloning system. It addresses the bottleneck of lacking efficient stable transformation and regeneration protocols for non‑model crops, providing a reproducible workflow for climate‑resilient breeding.
The study investigates how miR394 influences flowering time in Arabidopsis thaliana by combining transcriptomic profiling of mir394a mir394b double mutants with histological analysis of reporter lines. Bioinformatic analysis identified a novel lncRNA overlapping MIR394B (named MIRAST), and differential promoter activity of MIR394A and MIR394B suggests miR394 fine‑tunes flower development through transcription factor and chromatin remodeler regulation.