Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.
PlantCV v4: Image analysis software for high-throughput plant phenotyping
Authors: Schuhl, H., Brown, K. E., Sheng, H., Bhatt, P. K., Gutierrez, J., Schneider, D., Casto, A. L., Acosta-Gamboa, L., Ballenger, J. G., Barbero, F., Braley, J., Brown, A. M., Chavez, L., Cunningham, S., Dilhara, M., Dimech, A. M., Duenwald, J. G., Fischer, A., Gordon, J. M., Hendrikse, C., Hernandez, G. L., Hodge, J. G., Huber, M., Hurr, B. M., Jarolmasjed, S., Medina Jimenez, K., Kenney, S., Konkel, G., Kutschera, A., Lama, S., Lohbihler, M., Lorence, A., Luebbert, C., Ly, N., Manching, H. K., Marrano, A., Meerdink, S., Miklave, N. M., Mudrageda, P., Murphy, K. M., Peery, J. D., Pierik, R., Polyd
PlantCV v4 is an open-source Python framework that simplifies image-based plant phenotyping by providing extensive tutorials and streamlined installation, enabling users with limited coding skills to automate trait extraction. The release adds support for fluorescence, thermal, and hyperspectral imaging and introduces a new subpackage for morphological measurements such as leaf angle, which is validated against manual data collection methods.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.