Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes
Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.
The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.
Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.
Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
Quantitative trait locus mapping of root exudate metabolome in a Solanum lycopersicum Moneymaker x S. pimpinellifolium RIL population and their putative links to rhizosphere microbiome
Authors: Kim, B., Kramer, G., Leite, M. F. A., Snoek, B. L., Zancarini, A., Bouwmeester, H.
The study used untargeted metabolomics and QTL mapping in a tomato recombinant inbred line population to characterize root exudate composition and identify genetic loci controlling specific metabolites. It reveals domestication-driven changes in exudate profiles and links metabolic QTLs with previously reported microbial QTLs, suggesting a genetic basis for shaping the root microbiome.
Evaluation of combined root exudate and rhizosphere microbiota sampling approaches to elucidate plant-soil-microbe interaction
Authors: Escudero-Martinez, C., Browne, E. Y., Schwalm, H., Santangeli, M., Brown, M., Brown, L., Roberts, D. M., Duff, A. M., Morris, J., Hedley, P. E., Thorpe, P., Abbott, J. C., Brennan, F., Bulgarelli, D., George, T. S., Oburger, E.
The study benchmarked several sampling approaches for simultaneous profiling of root exudates and rhizosphere microbiota in soil-grown barley, revealing consistent exudate chemistry across methods but variation in root morphology and nitrogen exudation. High‑throughput amplicon sequencing and quantitative PCR showed protocol‑specific impacts on microbial composition, yet most rhizosphere-enriched microbes were captured by all approaches. The authors conclude that different protocols provide comparable integrated data, though methodological differences must be aligned with experimental objectives.
The study combined ecometabolomics of root exudates with fungal community profiling to assess how abiotic (soil moisture, temperature legacy) and biotic (microbial inoculum, plant density) treatments shape metabolite diversity and fungal assemblages in Guarea guidonia seedlings. While soil microbial legacy and moisture drove metabolite diversity, antimicrobial treatments altered metabolite composition, and fungal community structure was linked to metabolite profiles, revealing metabolite‑fungal associations as early indicators of plant response to disturbance.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.