Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 73 Papers

Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications

Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.05.692050

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.

Penicillium melinii plant growth‑promoting fungus root architecture auxin signaling biostimulant

High-frequency sorghum transformation toolkit enhances Cas9 efficiency and expands promoter-editing capability with SpRY

Authors: Shen, J., Aregawi, K., Anwar, S., Miller, T., Groover, E. D., Rajkumar, M., Savage, D. F., Lemaux, P. G.

Date: 2025-12-07 · Version: 2
DOI: 10.1101/2025.01.21.634149

Category: Plant Biology

Model Organism: Sorghum bicolor

AI Summary

The study presents an optimized Agrobacterium-mediated transformation toolkit for Sorghum bicolor that achieves up to 95.7% editing efficiency using CRISPR/Cas9 targeting the SbPDS gene, and demonstrates comparable performance with a PAM‑broadened SpRY variant. This platform enables multiplex genome editing and is positioned for integration of advanced tools such as prime and base editors to accelerate sorghum breeding.

Sorghum bicolor CRISPR/Cas9 Agrobacterium-mediated transformation SpRY (PAM‑flexible Cas9) high-efficiency genome editing

Salt stress disrupts local auxin and COP1 gradients in Arabidopsis apical hooks

Authors: van Veen, E., Kupers, J. J., Chen, X., Tang, Y. H., De Zeeuw, T., Duijts, K., Hayes, S., Testerink, C., Gommers, C. M. M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.03.691840

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.

apical hook salinity stress COP1 spatial gradient auxin signaling BBX28 repression

Vacuolar invertase knockout enhances drought tolerance in potato plants

Authors: Roitman, M., Teper-Bamnolker, P., Doron-Faigenboim, A., Sikron, N., Fait, A., Vrobel, O., Tarkowski, P., Moshelion, M., Bocobza, S., Eshel, D.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.12.01.691554

Category: Plant Biology

Model Organism: Solanum tuberosum

AI Summary

CRISPR/Cas9 knockout of the vacuolar invertase gene (StVInv) in potato enhanced drought resilience, with mutants maintaining higher stomatal conductance, transpiration, and photosynthetic efficiency, leading to improved agronomic water-use efficiency and biomass under water limitation. Metabolomic profiling showed accumulation of galactinol and raffinose, while ABA levels were reduced, indicating altered osmoprotective and hormonal responses that support sustained growth during drought.

drought stress vacuo lar invertase knockout CRISPR/Cas9 raffinose family oligosaccharides water-use efficiency

KDM7-mediated oxygen sensing reprograms chromatin to enhance hypoxia tolerance in the root

Authors: Zhang, D., Chirinos, X., Del Chiaro, A., Shukla, V., Ryder, A., Beltran, A. D. P., Iacopino, S., Bota, P., Zivkovic, D., Fioriti, F., Telara, Y., Ellison, C. J., Costa, F., Elliott, P. R., Giorgi, F., Giuntoli, B., Flashman, E. G., Abreu, I., Licausi, F.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.24.690241

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that Arabidopsis root tips adapt to hypoxia by increasing H3K4me3 levels, linked to the inhibition of group 7 demethylases (KDM7s). Genetic loss of KDM7s mimics hypoxic conditions, activating genes that sustain meristem survival, suggesting KDM7s act as root‑specific oxygen sensors that prime epigenetic tolerance mechanisms.

hypoxia root meristem H3K4 trimethylation KDM7 demethylase Arabidopsis

SPOROCYTELESS/NOZZLE acts together with MADS-domain transcription factors to regulate an auxin-dependent network controlling the Megaspore Mother Cell development

Authors: Cavalleri, A., Astori, C., Manrique, S., Bruzzaniti, G., Smaczniak, C., Mizzotti, C., Ruiu, A., Spano, M., Movilli, A., Gregis, V., Xu, X., Kaufmann, K., Colombo, L.

Date: 2025-11-26 · Version: 2
DOI: 10.1101/2025.03.11.641985

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study elucidates the SPL/NZZ‑dependent regulatory pathway governing megaspore mother cell (MMC) differentiation, revealing that SPL/NZZ directly targets genes and interacts with ovule‑identity MADS‑domain transcription factor complexes. Integration of multi‑omics data with genetic complementation and mutant analyses uncovers an auxin‑dependent downstream network that drives MMC formation.

megaspore mother cell SPL/NZZ MADS‑domain transcription factors auxin signaling regulatory network

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Mobility-enhanced virus vectors enable meristem genome editing in model and crop plants

Authors: Chiu, K. T., Higgs, H., Antunes, M. S., Lin, Y. T., McGarry, R. C.

Date: 2025-11-19 · Version: 1
DOI: 10.1101/2025.11.19.689159

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study engineered Tobacco rattle virus vectors incorporating distinct RNA secondary structures as mobility factors to improve guide RNA delivery to plant meristems. Using Nicotiana benthamiana plants expressing Cas9, optimal virus constructs were identified that generated both somatic and heritable edits, and these constructs were successfully applied to edit the emerging oilseed crop pennycress (Thlaspi arvense).

CRISPR/Cas9 Tobacco rattle virus (TRV) RNA mobility factors meristem editing virus-mediated gRNA delivery

MpNPR modulates lineage-specific oil body development and defence against gastropod herbivory in Marchantia polymorpha

Authors: Espinosa-Cores, L., Michavila, S., Gonzalez-Zuloaga, M., Solano, R., Gimenez-Ibanez, S.

Date: 2025-11-17 · Version: 1
DOI: 10.1101/2025.11.17.688000

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.

Marchantia polymorpha NPR signaling oil body formation MpERF13 gastropod herbivory

Antagonism between blue and red light-signalling controls thallus flatness in Marchantia polymorpha

Authors: Roetzer, J., Asper, B., Meir, Z., Edelbacher, N., Merai, Z., Datta, S., Dolan, L.

Date: 2025-11-11 · Version: 1
DOI: 10.1101/2025.11.10.687525

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.

light signaling thallus tropism Marchantia polymorpha photoreceptor mutants BBX transcription factors
Previous Page 2 of 8 Next