Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 69 Papers

The genetic architecture of leaf vein density traits and its importance for photosynthesis in maize

Authors: Coyac-Rodriguez, J. L., Perez-Limon, S., Hernandez-Jaimes, E., Hernandez-Coronado, M., Camo-Escobar, D., Alonso-Nieves, A. L., Ortega-Estrada, M. d. J., Gomez-Capetillo, N., Sawers, R. J., Ortiz-Ramirez, C. H.

Date: 2026-01-15 · Version: 1
DOI: 10.64898/2026.01.14.699362

Category: Plant Biology

Model Organism: Zea mays

AI Summary

Using diverse Mexican maize varieties and a MAGIC population, the study demonstrated that leaf vein density is both variable and plastic, correlating positively with photosynthetic rates for small intermediate veins and increasing under heat in drought-adapted lines. Twelve QTLs linked to vein patterning were identified, highlighting candidate genes for intermediate vein development and shedding light on the evolution of high-efficiency C4 leaf architecture.

leaf venation density C4 photosynthesis Zea mays QTL mapping MAGIC population

Southern South American Maize Landraces: A Source of Phenotypic Diversity

Authors: Dudzien, T. L., Freilij, D., Defacio, R. A., Fernandez, M., Paniego, N. B., Lia, V. V., Dominguez, P. G.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.02.697242

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study assessed 17 morphological, biochemical, and salt‑stress tolerance traits in 19 maize (Zea mays) landrace accessions from northern Argentina, revealing substantial variation both within and among accessions. Redundancy analysis linked phenotypic variation to the altitude of the collection sites, underscoring the potential of these landraces as sources of diverse biochemical and stress‑related traits for breeding.

Zea mays maize landraces phenotypic diversity biochemical traits salt stress tolerance

Membrane-binding domains define REMORIN phylogeny and provide a predicted structural basis for distinctive membrane nano-environments

Authors: Biermann, D., Gronnier, J.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.22.695504

Category: Plant Biology

Model Organism: General

AI Summary

The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.

REMORIN proteins C-terminal domain membrane nano-organization phylogenetic analysis structural bioinformatics

The influence of heavy metal stress on the evolutionary transition of teosinte to maize

Authors: Acosta Bayona, J. J., Vallebueno-Estrada, M., Vielle-Calzada, J.-P.

Date: 2025-12-22 · Version: 2
DOI: 10.1101/2025.03.17.643647

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study tests whether heavy‑metal stress contributed to maize domestication by exposing teosinte (Zea mays ssp. parviglumis) and the Palomero toluqueno landrace to sublethal copper and cadmium, then analysing genetic diversity, selection signatures, and transcriptomic responses of three chromosome‑5 heavy‑metal response genes (ZmHMA1, ZmHMA7, ZmSKUs5). Results reveal strong positive selection on these genes, heavy‑metal‑induced phenotypes resembling modern maize, and up‑regulation of Tb1, supporting a role for volcanic‑derived metal stress in early maize evolution.

heavy metal stress maize domestication Zea mays positive selection Tb1

Transcriptome and epigenome dynamics underpin cold stress priming in Arabidopsis

Authors: Sadykova, M., Saze, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694799

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.

stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics

DNA methylation mediates transcriptional stability and transposon-driven trans-regulation under drought in wheat

Authors: Reynolds, I. J., Barratt, L. J., Harper, A. L.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.04.692301

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.

drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements

Ethylene signal-driven plant-multitrophic synergy boosts crop performance

Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.690471

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.

arbuscular mycorrhizal fungi lateral root development ethylene‑responsive transcription factors flavonoid metabolism Zea mays

CHLOROPLAST GENOME AND PHYLOGENETIC ANALYSIS OF KATMON (Dillenia philippinensis Rolfe), A PHILIPPINE ENDEMIC FRUIT

Authors: Lucero, J. J. M., Munoz, J. A. M., Aglibot, L. Y., Cardona, D. E. M., Gueco, L. S., Manalang, A. P., Villanueva, J. C., Alonday, R. C. S.

Date: 2025-11-27 · Version: 1
DOI: 10.1101/2025.11.26.690882

Category: Plant Biology

Model Organism: Dillenia philippinensis

AI Summary

The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.

Dillenia philippinensis chloroplast genome Illumina NovaSeqX phylogenetic analysis simple sequence repeats

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme
Page 1 of 7 Next