Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 69 Papers

Overexpression of PtaHDG11 enhances drought tolerance and suppresses trichome formation in Populus tremula x Populus alba

Authors: Fendel, A., Fladung, M., Bruegmann, T.

Date: 2026-01-13 · Version: 1
DOI: 10.64898/2026.01.12.699028

Category: Plant Biology

Model Organism: Populus tremula × Populus alba

AI Summary

The study identified the poplar homolog of Arabidopsis HDG11 and generated transgenic poplar hybrids overexpressing PtaHDG11. Constitutive expression conferred markedly improved drought tolerance, as evidenced by higher leaf water content, reduced oxidative damage, up‑regulation of antioxidant genes, and greater post‑stress biomass, while also causing a glabrous phenotype. These results highlight PtaHDG11 as a promising target for breeding drought‑resilient trees.

HDG11 drought tolerance Populus hybrid antioxidant genes transgenic overexpression

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

The CCCH Zinc Finger Gene PgCCCH50 from Pearl Millet Confers Drought and Salt Tolerance through an ABA-Dependent PgAREB1-PgCCCH50 Module

Authors: xie, z., zhu, J., Yu, G., Ma, X., Zhou, Y., Yan, H., Huang, L.

Date: 2025-12-25 · Version: 1
DOI: 10.64898/2025.12.23.696222

Category: Plant Biology

Model Organism: Pennisetum glaucum

AI Summary

The authors performed a genome-wide analysis of 53 CCCH zinc‑finger genes in pearl millet, identified seven stress‑responsive members and demonstrated that overexpressing PgC3H50 in Arabidopsis enhances drought and salt tolerance. They showed that the ABA‑responsive transcription factor PgAREB1 directly binds the PgC3H50 promoter, activating its expression, as confirmed by yeast one‑hybrid, dual‑luciferase and EMSA assays, defining a new PgAREB1‑PgC3H50 regulatory module.

CCCH zinc finger proteins drought tolerance salinity stress ABA signaling Pearl millet

Transcriptome and epigenome dynamics underpin cold stress priming in Arabidopsis

Authors: Sadykova, M., Saze, H.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694799

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how DNA methylation influences cold stress priming in Arabidopsis thaliana, revealing that primed plants exhibit distinct gene expression and methylation patterns compared to non-primed plants. DNA methylation mutants, especially met1 lacking CG methylation, showed altered cold memory and misregulation of the CBF gene cluster, indicating that methylation ensures transcriptional precision during stress recall.

stress priming DNA methylation cold stress Arabidopsis thaliana transcriptome dynamics

Genetic Insights from Line x Tester Analysis of Maize Lethal Necrosis Testcrosses for Developing Multi-Stress-Resilient Hybrids in Sub-Saharan Africa

Authors: Gowda, M., Beyene, Y., L.M., S., Ogugo, V., Amadu, M. K., Chaikam, V.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.07.692857

Category: Plant Biology

Model Organism: Zea mays

AI Summary

A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.

maize lethal necrosis (MLN) drought tolerance grain yield combining ability GGE biplot

DNA methylation mediates transcriptional stability and transposon-driven trans-regulation under drought in wheat

Authors: Reynolds, I. J., Barratt, L. J., Harper, A. L.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.04.692301

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.

drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements

Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana

Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.689998

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.

reactive oxygen species FERONIA phytochrome B RBOHD excess light stress

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing
Page 1 of 7 Next