Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 16 Papers

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana

Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.689998

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.

reactive oxygen species FERONIA phytochrome B RBOHD excess light stress

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Role of AtCPK5 and AtCPK6 in the regulation of the plant immune response triggered by rhamnolipids in Arabidopsis

Authors: STANEK, J., FERNANDEZ, O., BOUDSOCQ, M., AGGAD, D., VILLAUME, S., PARENT, L., DHONDT CORDELIER, S., CROUZET, J., DOREY, S., CORDELIER, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683368

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.

rhamnolipids calcium dependent protein kinases Arabidopsis thaliana immunity reactive oxygen species defense gene expression

Phosphoproteomics uncovers rapid and specific transition from plant two-component system signaling to Ser/Thr phosphorylation by the intracellular redox sensor AHK5

Authors: Drechsler, T., Li, Z., Schulze, W. X., Harter, K. J. W.

Date: 2025-10-14 · Version: 1
DOI: 10.1101/2025.10.13.682113

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A comparative phosphoproteomics study using Arabidopsis thaliana ahk5 loss‑of‑function mutants and wild‑type seedlings revealed that the histidine kinase AHK5 mediates a rapid shift from multistep phosphorelay signaling to serine/threonine phosphorylation in response to H2O2. AHK5 controls ROS‑responsive phosphorylation of plasma‑membrane nanodomain proteins and orchestrates distinct ABA‑independent stomatal closure and ABA‑dependent root development pathways by modulating key components such as RBOHD, CAS, HPCA1, and auxin transporters.

AHK5 reactive oxygen species phosphoproteomics Arabidopsis thaliana nanodomain signaling

A copper-dependent, redox-based hydrogen peroxide perception in plants

Authors: Ishihama, N., Fukuda, Y., Shirano, Y., Takizawa, K., Hiroyama, R., Fujimoto, K. J., Ito, H., Nishimura, M., Yanai, T., Inoue, T., Shirasu, K., Laohavisit, A.

Date: 2025-07-25 · Version: 1
DOI: 10.1101/2025.07.22.666036

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study resolves the ectodomain structure of the plant-specific LRR‑RLK CARD1 (HPCA1) and reveals a surface‑exposed copper ion coordinated by histidines that is essential for hydrogen peroxide signaling. Combined structural, genetic, and biochemical analyses show that previously identified cysteine residues are not required for signal perception, establishing CARD1 as the first copper‑dependent redox receptor.

quinone signaling reactive oxygen species LRR‑RLK copper‑dependent receptor hydrogen peroxide signaling

Papaver S-determinants trigger an integrated network of mitochondrially derived ROS and disruption of energy metabolism in incompatible pollen tubes

Authors: Wang, L., Hsiao, A.-S., Carli, J., Raza, A., Lin, Z., Arnaud, D., Davies, J., Franklin-Tong, V. E., Smirnoff, N., Bosch, M.

Date: 2025-06-27 · Version: 1
DOI: 10.1101/2025.06.26.661469

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reconstitutes Papaver rhoeas self‑incompatibility (SI) in Arabidopsis thaliana by expressing the pollen S‑determinant PrpS, revealing that SI triggers a rapid Ca2+‑dependent signaling cascade that leads to mitochondrial H2O2 production, metabolic collapse, and programmed cell death. Using a genetically encoded H2O2 sensor and metabolic assays, the authors show that early mitochondrial disruption, driven by altered Ca2+, cytosolic pH, and distinct ROS sources, is central to the SI response.

self-incompatibility reactive oxygen species mitochondrial disruption Ca2+ signaling Arabidopsis thaliana

Advanced illumination-imaging reveals photosynthesis-triggered pH, ATP and NAD redox signatures across plant cell compartments

Authors: Zheng, K., Elsässer, M., Niemeier, J.-O., Barreto, P., Cislaghi, A. P., Hoang, M., Feitosa-Araujo, E., Wagner, S., Giese, J., Kotnik, F., Martinez, M. d. P., Buchert, F. E., Ugalde, J. M., Armbruster, U., Hippler, M., Meyer, A. J., Kunz, H.-H., Maurino, V. G., Finkemeier, I., Schallenberg-Rüdinger, M., Schwarzländer, M.

Date: 2025-06-21 · Version: 1
DOI: 10.1101/2025.06.16.659786

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The authors established a live‑cell imaging platform that combines confocal microscopy of genetically encoded fluorescent protein biosensors with on‑stage illumination to monitor pH, MgATP²⁻, and NADH/NAD⁺ dynamics during dark‑light transitions in Arabidopsis mesophyll cells. They discovered that photosynthetic proton pumping triggers a stromal alkalinization wave extending to the cytosol and mitochondria, elevates MgATP²⁻ levels, and drives reduction of the NAD pool, with malate dehydrogenase mutants showing altered cytosolic redox even in darkness. This methodological advance enables high‑resolution mapping of photosynthesis‑linked energy physiology across cellular compartments.

photosynthesis fluorescent protein biosensors subcellular pH dynamics MgATP2- signaling NAD redox metabolism

Non-Thermal Plasma Activated Water is an Effective Nitrogen Fertilizer Alternative for Arabidopsis thaliana

Authors: Kizer, J. J., Robinson, C. D., Lucas, T., Shannon, S., Hernandez, R., Stapelmann, K., Rojas-Pierce, M.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.12.659237

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared two plasma‑activated water (PAW) solutions with different H₂O₂ levels, produced by a radio‑frequency glow discharge, on Arabidopsis thaliana growth and stress responses. PAW lacking detectable H₂O₂ promoted seedling growth and induced nitrogen‑assimilation genes, while H₂O₂‑containing PAW did not affect growth but enhanced root performance under heat stress; mature plants fertilized with H₂O₂‑free PAW performed comparably to nitrate controls. These results indicate PAW can replace NO₃⁻ fertilizers provided H₂O₂ levels are carefully managed.

plasma activated water hydrogen peroxide reactive oxygen species nitrogen uptake heat stress

Acclimation of carbon metabolism to a changing environment across a leaf rosette of Arabidopsis thaliana

Authors: Brodsky, V., Kerscher, A., Urban, M., Naegele, T.

Date: 2025-05-03 · Version: 1
DOI: 10.1101/2025.04.29.651223

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared photosynthetic performance and carbon metabolism in mature versus immature leaves of Arabidopsis thaliana accessions from different latitudes under standard and low‑temperature/high‑light conditions. Leaf‑specific measurements of Fv/Fm and CO2 assimilation revealed distinct acclimation capacities, and integration of carbohydrate and carboxylic‑acid profiles into a carbon balance model indicated that mature leaves help stabilize metabolism in younger tissue. The authors emphasize the importance of accounting for intra‑rosette heterogeneity to avoid misleading metabolic interpretations.

Arabidopsis thaliana leaf-specific acclimation photosynthesis carbon metabolism carbon balance modeling
Page 1 of 2 Next