Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 43 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Comparative Evaluation of Conventional Inorganic Fertilization and Sesbania rostrata Green Manuring on Soil Properties and the Growth and Development of Oryza sativa L. Pant Basmati 1

Authors: Joshi, H. C., Patni, B., Guru, S. K., Bhatt, M. K., Singh, M.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.24.696455

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

A two‑year field trial compared conventional and organic nutrient management on the Basmati rice cultivar Pant Basmati 1, revealing that conventional fertilizer enhanced later‑stage growth and grain yield, while organic inputs increased early plant height and markedly improved soil health and harvest index in the second year. Despite some yield differences, organic management achieved comparable productivity with superior soil macro‑ and micronutrient status, water‑holding capacity, aggregate stability, and enzyme activities, supporting its sustainability as an alternative nutrient regime.

Oryza sativa organic nutrient management soil health harvest index Basmati rice

The Pik NLR pair accumulates at the plasma membrane as a hetero-oligomeric sensor-helper immune protein complex prior to activation

Authors: Pai, H., Contreras, M. P., Salguero Linares, J., Luedke, D., Posbeyikian, A., Kourelis, J., Kamoun, S., Marchal, C.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.11.30.691369

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study examined the pre‑activation state of the rice NLR pair Pik‑1 (sensor) and Pik‑2 (helper) when transiently expressed in Nicotiana benthamiana leaves. Both wild‑type and engineered Pik‑1 variants constitutively associate with Pik‑2 to form ~1 MDa hetero‑oligomeric complexes that localize to the plasma membrane in the absence of effector. These results reveal that some NLRs exist as pre‑assembled membrane‑associated complexes prior to pathogen perception.

NLR oligomerization Pik-1/Pik-2 sensor‑helper pair resting state complex plasma membrane localization Oryza sativa

Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana

Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.689998

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.

reactive oxygen species FERONIA phytochrome B RBOHD excess light stress

The mRNA covalent modification dihydrouridine regulates transcript turnover and photosynthetic capacity during plant abiotic stress

Authors: Yu, L., Melandri, G., Dittrich, A. C., Calleja, S., Rozzi, B., Ganguly, D. R., Palos, K., Srinivasan, A., Brewer, E. K., Fischer, H., Obata, T., Elgawad, H. A., Beemster, G. T. S., Henderson, R., Garcia, C. D., Zhang, X., Stern, D., Eveland, A., Schroeder, S. J., Skirycz, A., Lyons, E., Arnold, E. A., Gregory, B. D., Nelson, A. D. L., Pauli, D.

Date: 2025-11-24 · Version: 3
DOI: 10.1101/2025.01.17.633510

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study integrates multi-omics data from six Sorghum bicolor accessions under field drought to link RNA covalent modifications (RCMs) with photosynthetic performance, identifying the enzyme SbDUS2 that produces dihydrouridine (DHU) on transcripts. Loss‑of‑function dus2 mutants in Arabidopsis thaliana reveal that DHU deficiency leads to hyperstability of photosynthesis‑related mRNAs, impairing germination, development, and stress‑induced CO2 assimilation. The authors propose DHU as a post‑transcriptional mark that promotes rapid mRNA turnover during abiotic stress, enhancing plant resilience.

RNA covalent modifications dihydrouridine (DHU) drought stress photosynthesis RNA stability

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

Effects of carbon dioxide enrichment and environmental factors on photosynthesis, growth and yield and their interaction in cucumber: a meta-analysis

Authors: Liu, X., Liu, X., Xu, Y., Wang, Z., Sun, Q., Liu, S., Liu, B., Li, Q.

Date: 2025-11-01 · Version: 1
DOI: 10.1101/2025.10.31.685732

Category: Plant Biology

Model Organism: Cucumis sativus

AI Summary

A meta‑analysis of 73 studies on cucumber (Cucumis sativus) under elevated CO₂ (eCO₂) revealed that eCO₂ significantly increased net photosynthetic rate (+56.31%), biomass (+27.75%) and yield (+21.98%), while reducing stomatal conductance (‑36.07%) and transpiration (‑30.42%). The authors recommend maintaining eCO₂ levels between 800–1200 ppm together with higher light, temperature, optimal humidity, and adequate fertilization to optimise greenhouse cucumber production under climate‑change scenarios.

elevated CO₂ cucumber (Cucumis sativus) photosynthesis biomass and yield meta‑analysis

Role of AtCPK5 and AtCPK6 in the regulation of the plant immune response triggered by rhamnolipids in Arabidopsis

Authors: STANEK, J., FERNANDEZ, O., BOUDSOCQ, M., AGGAD, D., VILLAUME, S., PARENT, L., DHONDT CORDELIER, S., CROUZET, J., DOREY, S., CORDELIER, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683368

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.

rhamnolipids calcium dependent protein kinases Arabidopsis thaliana immunity reactive oxygen species defense gene expression

Spatiotemporal Analysis Reveals Mechanisms Controlling Reactive Oxygen Species and Calcium Interplay Following Root Compression

Authors: Vinet, P., Audemar, V., Durand-Smet, P., Frachisse, J.-M., Thomine, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683952

Category: Plant Biology

Model Organism: General

AI Summary

Using a microfluidic valve rootchip, the study simultaneously tracked ROS and calcium dynamics in compressed roots and found three kinetic phases linking mechanosensitive channel activity, NADPH oxidase‑dependent ROS accumulation, and secondary calcium influx. Pharmacological inhibition revealed that a fast calcium response is mediated by plasma‑membrane mechanosensitive channels, while a slower calcium increase is driven by ROS production.

mechanotransduction reactive oxygen species calcium signaling microfluidic compression root biology
Page 1 of 5 Next