MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
Advanced illumination-imaging reveals photosynthesis-triggered pH, ATP and NAD redox signatures across plant cell compartments
Authors: Zheng, K., Elsässer, M., Niemeier, J.-O., Barreto, P., Cislaghi, A. P., Hoang, M., Feitosa-Araujo, E., Wagner, S., Giese, J., Kotnik, F., Martinez, M. d. P., Buchert, F. E., Ugalde, J. M., Armbruster, U., Hippler, M., Meyer, A. J., Kunz, H.-H., Maurino, V. G., Finkemeier, I., Schallenberg-Rüdinger, M., Schwarzländer, M.
The authors established a live‑cell imaging platform that combines confocal microscopy of genetically encoded fluorescent protein biosensors with on‑stage illumination to monitor pH, MgATP²⁻, and NADH/NAD⁺ dynamics during dark‑light transitions in Arabidopsis mesophyll cells. They discovered that photosynthetic proton pumping triggers a stromal alkalinization wave extending to the cytosol and mitochondria, elevates MgATP²⁻ levels, and drives reduction of the NAD pool, with malate dehydrogenase mutants showing altered cytosolic redox even in darkness. This methodological advance enables high‑resolution mapping of photosynthesis‑linked energy physiology across cellular compartments.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
The study compared photosynthetic performance and carbon metabolism in mature versus immature leaves of Arabidopsis thaliana accessions from different latitudes under standard and low‑temperature/high‑light conditions. Leaf‑specific measurements of Fv/Fm and CO2 assimilation revealed distinct acclimation capacities, and integration of carbohydrate and carboxylic‑acid profiles into a carbon balance model indicated that mature leaves help stabilize metabolism in younger tissue. The authors emphasize the importance of accounting for intra‑rosette heterogeneity to avoid misleading metabolic interpretations.