Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 5 Papers

Assessing Drought Resilience and Identification of High Yielding Upland Rice Varieties through Phenology, Growth and Yield Traits

Authors: Hussain, T., Anothai, J., Nualsri, C., Ali, A., Ali, M. F., Khomphet, T.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.20.695743

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

Sixteen upland rice varieties were evaluated under three irrigation regimes (100%, 70%, and 50% field capacity) with additional six‑day water withholding to simulate moderate and severe drought. Yield losses ranged from 35% to 78% depending on stress level, and varieties Dawk Kha, Khao/Sai, and Dawk Pa‑yawm showed the greatest stability, suggesting they are promising for breeding drought‑resilient upland rice.

upland rice drought stress field capacity irrigation yield loss varietal stability

Drought drives reversible disengagement of root-mycorrhizal symbiosis

Authors: Akmakjian, G. Z., Nozue, K., Nakayama, H., Borowsky, A. T., Morris, A. M., Baker, K., Canto-Pastor, A., Paszkowski, U., Sinha, N., Brady, S., Bailey-Serres, J.

Date: 2025-08-27 · Version: 1
DOI: 10.1101/2025.08.25.671999

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study shows that during drought, rice (Oryza sativa) downregulates nutrient acquisition and arbuscular mycorrhizal (AM) symbiosis genes, causing the fungal partner to enter metabolic quiescence and retract hyphae, but upon re-watering the symbiosis is rapidly reactivated. This reversible dynamic suggests that plant‑fungus mutualisms are fragile under fluctuating water availability.

drought stress arbuscular mycorrhizal symbiosis Oryza sativa nutrient acquisition regulation re-watering recovery

Integrative comparative transcriptomics using cultivated and wild rice reveals key regulators of developmental and photosynthetic progression along the rice leaf developmental gradient

Authors: Jathar, V., Vivek, A., Panda, M. K., Daware, A. V., Dwivedi, A., Rani, R., Kumar, S., Ranjan, A.

Date: 2025-08-09 · Version: 1
DOI: 10.1101/2025.08.07.669153

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study performed comparative gene expression profiling across four rice accessions—from shoot apical meristem to primordia stage P5—to delineate developmental and photosynthetic transitions in leaf development. By integrating differential expression and gene regulatory network analyses, the authors identified stage-specific regulatory events and key transcription factors, such as RDD1, ARID2, and ERF3, especially in the wild rice Oryza australiensis, offering a comprehensive framework for optimizing leaf function.

leaf development gene regulatory networks photosynthesis rice (Oryza) transcription factors

ERF transcription factor regulons underpin growth-defence trade-off under acute heat stress in rice seedlings

Authors: Nair, A. U., Vishwakarma, S., Guha, T., Kadumuri, R. V., Fritschi, F. B., Chavali, S., Allu, A. D.

Date: 2025-04-22 · Version: 1
DOI: 10.1101/2025.04.21.649784

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study evaluated how acute heat stress affects early-stage rice seedlings, identifying a critical temperature threshold that impairs growth. Transcriptomic profiling of shoots and roots revealed ethylene‑responsive factors (ERFs) as central regulators, with ethylene and jasmonic acid acting upstream, and pre‑treatment with these hormones mitigated heat damage. These findings highlight ERF‑hormone interaction networks as targets for improving rice heat resilience.

heat stress Oryza sativa seedling transcriptomics ethylene responsive factors phytohormone treatment

Omics-driven Identification of Candidate Genes and SNP markers in a Major QTL Controlling Early Heading in Rice

Authors: Rao, D., T, N. S., CG, G., Gaur, N., Jamaloddin, M., Maganti, S. M., Raman, M. S., Patel, H. K., Tiwari, S., Sonti, R. V.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.25.645207

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study identified a major QTL (qDTH3) on chromosome 3 responsible for a 7‑10‑day earlier heading phenotype in the rice line SM93, using QTL‑seq, KASP genotyping, association mapping, and transcriptomic analysis to fine‑map the locus to a 2.53 Mb region and pinpoint candidate genes. SNP markers linked to these genes were proposed as tools for breeding early‑maturing, climate‑resilient rice varieties.

heading date rice (Oryza sativa) QTL-seq SNP markers transcriptomics