Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 3 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Deciphering Photosynthetic Protein Networks: A Crosslinking-MS Strategy for Studying Functional Thylakoid Membranes

Authors: Frances, N., Giustini, C., Finazzi, G., Ferro, M., Albanese, P.

Date: 2025-10-08 · Version: 1
DOI: 10.1101/2025.10.07.681025

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study introduces an enhanced crosslinking mass spectrometry workflow that preserves native protein interactions within functional thylakoid membranes of Arabidopsis and spinach, while electron transport remains active. Mapping the obtained crosslinks to known structures validates complex integrity and reveals novel assemblies, facilitating in situ exploration of photosynthetic membrane protein networks.

photosynthesis thylakoid membranes crosslinking mass spectrometry protein complexes Arabidopsis thaliana

Large-scale single-cell profiling of stem cells uncovers redundant regulators of shoot development and yield trait variation

Authors: Xu, X., Passalacqua, M., Rice, B., Demesa-Arevalo, E., Kojima, M., Takebayashi, Y., Harris, B., Sakakibara, H., Gallavotti, A., Gillis, J., Jackson, D.

Date: 2025-04-17 · Version: 2
DOI: 10.1101/2024.03.04.583414

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study finely dissected shoot stem cell–enriched tissues from maize and Arabidopsis thaliana and optimized single‑cell RNA‑seq protocols to reliably capture CLAVATA3 and WUSCHEL‑expressing cells. Cross‑species comparison and functional validation, including spatial transcriptomics and mutant analyses, revealed conserved ribosome‑associated RNA‑binding proteins and sugar‑kinase families as key regulators linked to shoot development and yield traits.

single-cell RNA sequencing shoot stem cells Arabidopsis thaliana Zea mays stem cell regulators