Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 69 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

Physics-Informed Neural Network Methods for Predicting Plant Height Development

Authors: Shao, Y., van Eeuwijk, F., Peeters, C., Zumsteg, O., Athanasiadis, I., van Voorn, G.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699475

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study introduces a hybrid modeling framework that integrates a logistic ordinary differential equation with a Long Short-Term Memory neural network to form a Physics-Informed Neural Network (PINN) for predicting wheat plant height. Using only time and temperature as inputs, the PINN outperformed other longitudinal growth models, achieving the lowest average RMSE and reduced variability across multiple random initializations. The results suggest that embedding biological growth constraints within data‑driven models can substantially improve prediction accuracy for plant traits.

Physics-Informed Neural Network logistic ODE Long Short-Term Memory plant height prediction wheat

Ultra large-scale 2D clinostats uncover environmentally derived variation in tomato responses to simulated microgravity

Authors: Hostetler, A. N., Kennebeck, E., Reneau, J. W., Birtell, E., Caldwell, D. L., Iyer-Pascuzzi, A. S., Sparks, E. E.

Date: 2026-01-13 · Version: 2
DOI: 10.1101/2025.05.16.654566

Category: Plant Biology

Model Organism: Solanum lycopersicum (tomato)

AI Summary

The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.

simulated microgravity ultra large-scale clinostat tomato (Solanum lycopersicum) heat stress plant growth interaction

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

Alternative splicing of PIF4 regulates plant development under heat stress

Authors: Gonzalez, M. N., Alary, B., Szakonyi, D., Laloum, T., Duque, P., Martin, G.

Date: 2025-12-18 · Version: 1
DOI: 10.64898/2025.12.17.694898

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.

PIF4 alternative splicing heat stress photomorphogenesis post‑transcriptional regulation

In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants

Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693997

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.

alternative splicing branch point recognition AtSF1 circadian clock regulation plant immunity

QTL for Heat-Induced Stomatal Anatomy Underpin Gas Exchange Variation in Field-Grown Wheat

Authors: Chaplin, E. D., Tanaka, E., Merchant, A., Sznajder, B., Trethowan, R., Salter, W. T.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.16.694723

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study evaluated how stomatal anatomy and physiological efficiency influence wheat heat tolerance across multi‑environment field trials with 200 genotypes, using early versus delayed sowing to impose temperature stress. Findings revealed a decoupling between anatomical capacity (gsmax) and actual conductance (gs, gse) under heat, plastic shifts toward smaller, denser stomata, and identified 125 QTL linked to stomatal traits, suggesting targets for breeding climate‑resilient wheat.

stomatal conductance heat stress wheat (Triticum aestivum) QTL mapping stomatal anatomy

Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens

Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.

Date: 2025-12-16 · Version: 1
DOI: 10.64898/2025.12.15.692859

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.

tandem kinase proteins HMA domain disease resistance barley wheat
Page 1 of 7 Next