Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 44 Papers

Systematic Analysis of the EXO70 Gene Family in Kiwifruit Species: Evolutionary Selection and Potential Functions in Plant Immunity

Authors: Cui, W., DENG, C. H., Yoon, M. H., Zarsky, V., Rikkerink, E. H. A.

Date: 2025-10-28 · Version: 1
DOI: 10.1101/2025.10.28.684437

Category: Plant Biology

Model Organism: Actinidia spp.

AI Summary

A genome-wide survey identified 217 EXO70 genes across five kiwifruit (Actinidia spp.) species, classifying them into three subfamilies and nine clades and revealing lineage‑specific expansions, especially in EXO70C, EXO70E, and EXO70H. Functional assays demonstrated that kiwifruit EXO70B1 interacts with the immune hub protein RIN4_1, suggesting a conserved EXO70‑RIN4 module in plant immunity. The study provides a foundational resource for exploring EXO70‑mediated disease resistance in kiwifruit.

EXO70 gene family Actinidia vesicle trafficking plant immunity RIN4 interaction

Deciphering Photosynthetic Protein Networks: A Crosslinking-MS Strategy for Studying Functional Thylakoid Membranes

Authors: Frances, N., Giustini, C., Finazzi, G., Ferro, M., Albanese, P.

Date: 2025-10-08 · Version: 1
DOI: 10.1101/2025.10.07.681025

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study introduces an enhanced crosslinking mass spectrometry workflow that preserves native protein interactions within functional thylakoid membranes of Arabidopsis and spinach, while electron transport remains active. Mapping the obtained crosslinks to known structures validates complex integrity and reveals novel assemblies, facilitating in situ exploration of photosynthetic membrane protein networks.

photosynthesis thylakoid membranes crosslinking mass spectrometry protein complexes Arabidopsis thaliana

Microclimatic Effects on Functional Traits of Arctostaphylos crustacea ssp. crustacea in Alameda County, California, USA

Authors: Hsiao, L.

Date: 2025-10-06 · Version: 1
DOI: 10.1101/2025.10.03.680375

Category: Plant Biology

Model Organism: Arctostaphylos crustacea ssp. crustacea

AI Summary

The study examined how microclimatic factors influence leaf morphology and photosynthetic productivity in Arctostaphylos crustacea ssp. crustacea across two chaparral sites in California, finding that higher light and lower soil moisture increased leaf mass per area, leaf angle steepness, and photosynthetic rates. Linear mixed‑model analysis identified light level as the strongest predictor, with vapor pressure deficit, soil moisture, leaf temperature, and leaf angle also contributing, highlighting the role of combined microclimatic interactions in driving intraspecific trait variation.

microclimate leaf mass per area (LMA) photosynthesis intraspecific trait variation chaparral ecosystems

Cellular energy sensor SnRK1 suppresses salicylic acid-dependent and -independent defenses and bacterial resistance in Arabidopsis

Authors: Jie, L., Sanagi, M., Yasuda, S., Yamada, K., Ejima, S., Sugisaki, A., Takagi, J., Nomoto, M., Xin, X., Tada, Y., Saijo, Y., Sato, T.

Date: 2025-10-01 · Version: 1
DOI: 10.1101/2025.10.01.679707

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.

SnRK1 salicylic acid signaling plant immunity energy status high humidity

A Key Role for S-Nitrosylation in Immune Regulation and Development in the Liverwort Marchantia polymorpha

Authors: Goodrich, J.

Date: 2025-09-30 · Version: 1
DOI: 10.1101/2025.09.29.679193

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.

Nitric oxide S-nitrosylation GSNOR Marchantia polymorpha plant immunity

Wild genes to the rescue: High-throughput genomics uncovers the wild source of broomrape resistance in sunflower

Authors: Sisou, D., Ziadne, H., Eizenberg-Weiss, M., Eizenberg, H., Hubner, S.

Date: 2025-09-16 · Version: 1
DOI: 10.1101/2025.09.14.676089

Category: Plant Biology

Model Organism: Helianthus annuus

AI Summary

The study developed a high-throughput phenotyping platform to assess root infestation by Orobanche cumana in a diverse sunflower association mapping population and applied a dual GWAS using SNPs and k-mers to uncover resistance loci. It validated known QTLs with higher resolution, identified novel candidate genes such as leucine‑rich repeat receptor kinases, and highlighted introgressed segments from wild Helianthus species that contribute to broomrape resistance.

Orobanche cumana Helianthus annuus GWAS k‑mer mapping resistance QTL

An Axiom SNP genotyping array for potato: development, evaluation and applications

Authors: Baig, N., Thelen, K., Ayenan, M. A. T., Hartje, S., Obeng-Hinneh, E., Zgadzaj, R., Renner, J., Muders, K., Truberg, B., Rosen, A., Prigge, V., Bruckmueller, J., Luebeck, J., Van Inghelandt, D., Stich, B.

Date: 2025-08-20 · Version: 1
DOI: 10.1101/2025.08.17.670748

Category: Plant Biology

Model Organism: Solanum tuberosum

AI Summary

The study reports the creation and validation of a high‑density Axiom SNP array for Solanum tuberosum, based on 10X Genomics sequencing of 108 diverse clones and integration of existing Illumina markers. The array demonstrated high reproducibility and, after filtering, provided 206,616 informative markers for population structure analysis, GWAS of polyphenol oxidase activity, and genomic prediction with accuracies up to 0.86.

high-density SNP array potato (Solanum tuberosum) genomic-assisted breeding GWAS polyphenol oxidase activity

Identification of a novel link connecting indole-3-acetamide with abscisic acid biosynthesis and signaling

Authors: Moya-Cuevas, J., Ortiz-Garcia, P., Gonzalez Ortega-Villizan, A., Viguera-Leza, I., Perez-Gonzalez, A., Paz-Ares, J., Alonso-Blanco, C., Vicente-Carbajosa, J., Pollmann, S.

Date: 2025-08-20 · Version: 1
DOI: 10.1101/2025.08.15.670611

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A genome-wide association study of 166 Iberian Arabidopsis accessions identified loci, including ABA3 and GA2ox2, that modulate the inhibitory effect of the auxin precursor indole-3-acetamide (IAM) on primary root elongation. Integrating sequence analysis, transcriptomics, 3D protein modeling, and mutant physiology revealed that IAM promotes ABA biosynthesis and signaling, uncovering a novel node of hormone crosstalk.

indole-3-acetamide (IAM) abscisic acid (ABA) signaling Arabidopsis thaliana GWAS hormone crosstalk

NUDIX Hydrolases Target Specific Inositol Pyrophosphates and Regulate Phosphate Homeostasis and Bacterial Pathogen Susceptibility in Arabidopsis

Authors: Schneider, R., Lami, K., Prucker, I., Stolze, S. C., Strauss, A., Schmidt, J. M., Bartsch, S. M., Langenbach, K., Lange, E., Ritter, K., Furkert, D., Faiss, N., Kumar, S., Hasan, M. S., Makris, A., Krusenbaum, L., Wege, S., Belay, Y. Z., Kriescher, S., The, J., Harings, M., Grundler, F., Ried-Lasi, M. K., Schoof, H., Gaugler, P., Kamleitner, M., Fiedler, D., Nakagami, H., Giehl, R. F., Lahaye, T., Bhattacharjee, S., Jessen, H. J., Gaugler, V., Schaaf, G.

Date: 2025-08-12 · Version: 2
DOI: 10.1101/2024.10.18.619122

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified two subclades of Arabidopsis NUDIX hydrolases that selectively hydrolyze distinct inositol pyrophosphate isomers, with subclade I targeting 4-InsP7 and subclade II targeting 3-InsP7 in a Mg2+-dependent manner. Loss-of-function mutants of subclade II NUDTs displayed disrupted phosphate and iron homeostasis, elevated 1/3-InsP7 levels, and increased resistance to Pseudomonas syringae, revealing roles in nutrient signaling and plant immunity, while cross-kingdom analyses showed conserved PP-InsP‑metabolizing activities.

Inositol pyrophosphates NUDIX hydrolases phosphate homeostasis iron homeostasis plant immunity

Integrative comparative transcriptomics using cultivated and wild rice reveals key regulators of developmental and photosynthetic progression along the rice leaf developmental gradient

Authors: Jathar, V., Vivek, A., Panda, M. K., Daware, A. V., Dwivedi, A., Rani, R., Kumar, S., Ranjan, A.

Date: 2025-08-09 · Version: 1
DOI: 10.1101/2025.08.07.669153

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study performed comparative gene expression profiling across four rice accessions—from shoot apical meristem to primordia stage P5—to delineate developmental and photosynthetic transitions in leaf development. By integrating differential expression and gene regulatory network analyses, the authors identified stage-specific regulatory events and key transcription factors, such as RDD1, ARID2, and ERF3, especially in the wild rice Oryza australiensis, offering a comprehensive framework for optimizing leaf function.

leaf development gene regulatory networks photosynthesis rice (Oryza) transcription factors
Previous Page 2 of 5 Next