Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 21 Papers

Zinc deficiency induces spatially distinct responses in roots and impacts ZIP12-dependent zinc homeostasis in Arabidopsis

Authors: Thiebaut, N., Persson, D. P., Sarthou, M., Stevenne, P., Bosman, B., Carnol, M., Fanara, S., Verbruggen, N., Hanikenne, M.

Date: 2025-06-30 · Version: 1
DOI: 10.1101/2025.06.26.661794

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study combined cell biology, transcriptomics, and ionomics to reveal that zinc deficiency reduces root apical meristem size while preserving meristematic activity and local Zn levels, leading to enhanced cell elongation and differentiation in Arabidopsis thaliana. ZIP12 was identified as a highly induced gene in the zinc‑deficient root tip, and zip12 mutants displayed impaired root growth, altered RAM structure, disrupted Zn‑responsive gene expression, and abnormal metal partitioning, highlighting ZIP12’s role in maintaining Zn homeostasis and meristem function.

zinc deficiency root apical meristem ZIP12 transcriptomics ionomics

Multi-Omics Analysis of Heat Stress-Induced Memory in Arabidopsis

Authors: Thirumlaikumar, V. P. P., Yu, L., Arora, D., Mubeen, U., Wisniewski, A., Walther, D., Giavalisco, P., Alseekh, S., DL Nelson, A., Skirycz, A., Balazadeh, S.

Date: 2025-06-23 · Version: 1
DOI: 10.1101/2025.06.19.660594

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uses a high‑throughput comparative multi‑omics strategy to profile transcript, metabolite, and protein dynamics in Arabidopsis thaliana seedlings throughout the heat‑stress memory (HSM) phase following acquired thermotolerance. Early recovery stages show rapid transcriptional activation of memory‑related genes, while protein levels stay elevated longer, and distinct metabolite patterns emerge, highlighting temporal layers of the memory process.

heat stress acquired thermotolerance heat stress memory multi-omics Arabidopsis thaliana

Advanced illumination-imaging reveals photosynthesis-triggered pH, ATP and NAD redox signatures across plant cell compartments

Authors: Zheng, K., Elsässer, M., Niemeier, J.-O., Barreto, P., Cislaghi, A. P., Hoang, M., Feitosa-Araujo, E., Wagner, S., Giese, J., Kotnik, F., Martinez, M. d. P., Buchert, F. E., Ugalde, J. M., Armbruster, U., Hippler, M., Meyer, A. J., Kunz, H.-H., Maurino, V. G., Finkemeier, I., Schallenberg-Rüdinger, M., Schwarzländer, M.

Date: 2025-06-21 · Version: 1
DOI: 10.1101/2025.06.16.659786

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The authors established a live‑cell imaging platform that combines confocal microscopy of genetically encoded fluorescent protein biosensors with on‑stage illumination to monitor pH, MgATP²⁻, and NADH/NAD⁺ dynamics during dark‑light transitions in Arabidopsis mesophyll cells. They discovered that photosynthetic proton pumping triggers a stromal alkalinization wave extending to the cytosol and mitochondria, elevates MgATP²⁻ levels, and drives reduction of the NAD pool, with malate dehydrogenase mutants showing altered cytosolic redox even in darkness. This methodological advance enables high‑resolution mapping of photosynthesis‑linked energy physiology across cellular compartments.

photosynthesis fluorescent protein biosensors subcellular pH dynamics MgATP2- signaling NAD redox metabolism

Non-Thermal Plasma Activated Water is an Effective Nitrogen Fertilizer Alternative for Arabidopsis thaliana

Authors: Kizer, J. J., Robinson, C. D., Lucas, T., Shannon, S., Hernandez, R., Stapelmann, K., Rojas-Pierce, M.

Date: 2025-06-17 · Version: 1
DOI: 10.1101/2025.06.12.659237

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared two plasma‑activated water (PAW) solutions with different H₂O₂ levels, produced by a radio‑frequency glow discharge, on Arabidopsis thaliana growth and stress responses. PAW lacking detectable H₂O₂ promoted seedling growth and induced nitrogen‑assimilation genes, while H₂O₂‑containing PAW did not affect growth but enhanced root performance under heat stress; mature plants fertilized with H₂O₂‑free PAW performed comparably to nitrate controls. These results indicate PAW can replace NO₃⁻ fertilizers provided H₂O₂ levels are carefully managed.

plasma activated water hydrogen peroxide reactive oxygen species nitrogen uptake heat stress

m6A RNA methylation attenuates thermotolerance in Arabidopsis

Authors: Shekhawat, K., Sheikh, A., Nawaz, K., Fatima, A., Alzayed, W., Nagaranjan, A. P., Hirt, H.

Date: 2025-05-23 · Version: 1
DOI: 10.1101/2025.05.22.655480

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that N6‑methyladenosine (m6A) RNA methylation acts as a negative regulator of thermotolerance in Arabidopsis thaliana, with loss of m6A increasing heat‑responsive gene expression and mRNA stability. Heat shock triggers a transient reduction of m6A levels, which is linked to enrichment of the H3K4me3 histone mark at target loci, enhancing transcription of heat shock proteins. These findings reveal a coordinated interplay between RNA methylation and chromatin modifications that fine‑tunes the plant heat stress response.

heat stress m6A RNA methylation thermotolerance Arabidopsis thaliana H3K4me3 histone modification

Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis

Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.

Date: 2025-05-16 · Version: 1
DOI: 10.1101/2025.05.15.654287

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.

ascorbate Arabidopsis thaliana auxin biosynthesis redox homeostasis transcriptomics

Integrative analysis of plant responses to a combination of water deficit, heat stress and eCO2 reveals a role for OST1 and SLAH3 in regulating stomatal responses

Authors: Pelaez-Vico, M. A., Sinha, R., Ghani, A., Lopez-Climent, M. F., Joshi, T., Fritschi, F. B., Zandalinas, S. I., Mittler, R.

Date: 2025-05-11 · Version: 1
DOI: 10.1101/2025.05.07.652739

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis thaliana integrates physiological, genetic, hormonal, and transcriptomic responses to combined water deficit, heat stress, and elevated CO2. Results show that stomatal aperture under these complex stress combinations is governed by a specific set of regulators, including nitric oxide, OPEN STOMATA 1, and the SLAH3 anion channel, distinct from those active under simpler stress conditions. This reveals a hierarchical stomatal stress code that could inform future research on plant resilience to global change.

Global Change Factor combination stomatal aperture regulation Arabidopsis thaliana water deficit heat stress

Acclimation of carbon metabolism to a changing environment across a leaf rosette of Arabidopsis thaliana

Authors: Brodsky, V., Kerscher, A., Urban, M., Naegele, T.

Date: 2025-05-03 · Version: 1
DOI: 10.1101/2025.04.29.651223

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compared photosynthetic performance and carbon metabolism in mature versus immature leaves of Arabidopsis thaliana accessions from different latitudes under standard and low‑temperature/high‑light conditions. Leaf‑specific measurements of Fv/Fm and CO2 assimilation revealed distinct acclimation capacities, and integration of carbohydrate and carboxylic‑acid profiles into a carbon balance model indicated that mature leaves help stabilize metabolism in younger tissue. The authors emphasize the importance of accounting for intra‑rosette heterogeneity to avoid misleading metabolic interpretations.

Arabidopsis thaliana leaf-specific acclimation photosynthesis carbon metabolism carbon balance modeling

Multilevel analysis of response to plant growth promoting and pathogenic bacteria in Arabidopsis roots and the role of CYP71A27 in this response

Authors: Koprivova, A., Ristova, D., Berka, M., Berkova, V., Türksoy, G. M., Andersen, T. G., Westhoff, P., Cerny, M., Kopriva, S.

Date: 2025-03-27 · Version: 1
DOI: 10.1101/2025.03.26.645393

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study compares transcriptional, proteomic, and metabolomic responses of wild‑type Arabidopsis and a cyp71A27 mutant to a plant‑growth‑promoting Pseudomonas fluorescens strain and a pathogenic Burkholderia glumeae strain, revealing distinct reprogramming and an unexpected signaling role for the non‑canonical P450 CYP71A27. Mutant analysis showed that loss of CYP71A27 alters gene and protein regulation, especially during interaction with the PGP bacterium, while having limited impact on root metabolites and exudates.

CYP71A27 plant‑microbe interaction Pseudomonas fluorescens CH267 Burkholderia glumeae PG1 transcriptomics

Arabidopsis root lipid droplets are hubs for membrane homeostasis under heat stress, and triterpenoid synthesis and storage.

Authors: Scholz, P., Dabisch, J., Clews, A. C., Niemeyer, P. W., Vilchez, A. C., Lim, M. S. S., Sun, S., Hembach, L., Dreier, F., Blersch, K., Preuss, L., Bonin, M., Lesch, E., Iwai, Y., Shimada, T., Eirich, J., Finkemeier, I., Gutbrod, K., Doermann, P., Wang, Y., Mullen, R. T., Ischebeck, T.

Date: 2025-03-26 · Version: 1
DOI: 10.1101/2025.03.24.644787

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how heat stress alters lipid droplet (LD) number and composition in Arabidopsis thaliana roots, revealing degradation of membrane lipids and accumulation of TAGs and LDs. Proteomic and lipidomic analyses of LDs from a specific Arabidopsis mutant identified novel LD-associated proteins, including triterpene biosynthetic enzymes, whose substrates and products also accumulate in LDs, indicating LDs function as both sinks and sources during stress‑induced membrane remodeling and specialized metabolism.

lipid droplets heat stress Arabidopsis thaliana roots triterpene biosynthesis lipidomics
Previous Page 2 of 3 Next