A meta‑analysis of 73 studies on cucumber (Cucumis sativus) under elevated CO₂ (eCO₂) revealed that eCO₂ significantly increased net photosynthetic rate (+56.31%), biomass (+27.75%) and yield (+21.98%), while reducing stomatal conductance (‑36.07%) and transpiration (‑30.42%). The authors recommend maintaining eCO₂ levels between 800–1200 ppm together with higher light, temperature, optimal humidity, and adequate fertilization to optimise greenhouse cucumber production under climate‑change scenarios.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study introduces an enhanced crosslinking mass spectrometry workflow that preserves native protein interactions within functional thylakoid membranes of Arabidopsis and spinach, while electron transport remains active. Mapping the obtained crosslinks to known structures validates complex integrity and reveals novel assemblies, facilitating in situ exploration of photosynthetic membrane protein networks.
Trichoderma afroharzianum behaves differently with respect to the host transcriptome and microbial communities under varying iron availability in pea plants
Authors: Kabir, A. H., Thapa, A., Ara Saiful, S. A., Talukder, S. K.
The study examined how the bioinoculant Trichoderma afroharzianum T22 influences Pisum sativum growth under iron-sufficient versus iron-deficient conditions, finding pronounced benefits—enhanced photosynthesis, Fe/N accumulation, and stress‑related gene expression—only during iron deficiency. RNA‑seq revealed distinct gene expression patterns tied to symbiosis, iron transport, and redox pathways, and microbiome profiling showed T22 reshapes the root bacterial community under deficiency, suggesting context‑dependent mutualism.
The study examined how microclimatic factors influence leaf morphology and photosynthetic productivity in Arctostaphylos crustacea ssp. crustacea across two chaparral sites in California, finding that higher light and lower soil moisture increased leaf mass per area, leaf angle steepness, and photosynthetic rates. Linear mixed‑model analysis identified light level as the strongest predictor, with vapor pressure deficit, soil moisture, leaf temperature, and leaf angle also contributing, highlighting the role of combined microclimatic interactions in driving intraspecific trait variation.
Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes
Authors: Bojdova, T., Hlouskova, L., Holusova, K., Svacina, R., Hribova, E., Ilikova, I., Thiel, J., Kim, G., Pleskot, R., Houben, A., Bartos, J., Karafiatova, M.
The study characterizes tissue-specific elimination of B chromosomes in Sorghum purpureosericeum during embryo development, identifying 28 candidate genes linked to this process. Integrated in situ visualization, genome sequencing, and transcriptomic analyses reveal that the B chromosome originates from multiple A chromosomes, harbors unique repeats, and expresses divergent kinetochore components that likely mediate its selective removal.
The study evaluated whether integrating genomic, transcriptomic, and drone-derived phenomic data improves prediction of 129 maize traits across nine environments, using both linear (rrBLUP) and nonlinear (SVR) models. Multi-omics models consistently outperformed single-omics models, with transcriptomic data especially enhancing cross‑environment predictions and capturing genotype‑by‑environment interactions. The results highlight the added value of combining transcriptomics and phenomics with genotypes for more accurate and generalizable trait prediction in maize.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.