Evolutionary origin and functional mechanism of Lhcx in the diatom photoprotection
Authors: Kumazawa, M., Akimoto, S., Takabayashi, A., Imaizumi, K., Tsuji, S., Hasegawa, H., Sakurai, A., Imamura, S., Ishikawa, N., Inoue-Kashino, N., Kashino, Y., Ifuku, K.
Molecular phylogenetic analysis indicated that diatom Lhcx proteins share a common ancestor with green algal Lhcsrs, suggesting acquisition via horizontal gene transfer. Knockout of the Lhcx1 gene in the diatom Chaetoceros gracilis almost eliminated non‑photochemical quenching and revealed that Lhcx1 mediates quenching in detached antenna complexes, while also influencing PSII quantum yield and carbon fixation under high‑light conditions. These findings elucidate the evolutionary origin and mechanistic role of Lhcx‑mediated photoprotection in diatoms.
The study employed computational approaches to characterize the SUMOylation (ULP) machinery in Asian rice (Oryza sativa), analyzing phylogenetic relationships, transcriptional patterns, and protein structures across the reference genome, a population panel, and wild relatives. Findings reveal an expansion of ULP genes in cultivated rice, suggesting selection pressure during breeding and implicating specific ULPs in biotic and abiotic stress responses, providing resources for rice improvement.
Researchers isolated a fungal pathogen from a naturally infected Rumex crispus leaf in Japan and identified it as Teratoramularia rumicicola using morphological traits and phylogenetic analysis of ITS and LSU rDNA sequences. Host range tests showed the isolate (TR4) caused disease and reduced biomass in three Rumex species but was harmless to five tested forage crops, indicating its potential as a selective bioherbicide for pasture systems.
Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
The study identifies a novel C-terminal FR motif in Lotus japonicus NODULE INCEPTION (NIN) that expands DNA‑binding specificity by stabilizing the RWP‑RK dimer, and shows that loss of this motif impairs nodulation and nitrogen fixation. Comparative analysis reveals that Arabidopsis NLP2 also possesses a NIN‑type FR, and phylogenetic data suggest the motif originated in early gymnosperms, indicating it predates the evolution of root nodule symbiosis.
MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.
Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.
The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.