DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The study employed computational approaches to characterize the SUMOylation (ULP) machinery in Asian rice (Oryza sativa), analyzing phylogenetic relationships, transcriptional patterns, and protein structures across the reference genome, a population panel, and wild relatives. Findings reveal an expansion of ULP genes in cultivated rice, suggesting selection pressure during breeding and implicating specific ULPs in biotic and abiotic stress responses, providing resources for rice improvement.
Researchers isolated a fungal pathogen from a naturally infected Rumex crispus leaf in Japan and identified it as Teratoramularia rumicicola using morphological traits and phylogenetic analysis of ITS and LSU rDNA sequences. Host range tests showed the isolate (TR4) caused disease and reduced biomass in three Rumex species but was harmless to five tested forage crops, indicating its potential as a selective bioherbicide for pasture systems.
The study profiled small interfering RNAs (siRNAs) in barley (Hordeum vulgare) seeds differing in viability after controlled long‑term storage, identifying 85,728 differentially expressed siRNAs associated with seed vigor. Trans‑acting siRNAs displayed distinct temporal patterns during imbibition, and functional analyses linked siRNA targets to key processes such as cytochrome activity, root development, and carbohydrate metabolism, suggesting a role in maintaining metabolic activity during germination.
Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.
The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.
Salt stress strongly suppresses root growth in Festuca rubra while sparing shoot development. Transcriptome profiling identified over 68,000 differentially expressed genes, with up‑regulated genes enriched in methionine, melatonin, and suberin biosynthesis and down‑regulated genes involved in gibberellin, ABA, and sugar signaling, indicating extensive hormonal and metabolic reprogramming. Paradoxical regulation of gibberellin and ethylene pathways suggests a finely tuned balance between growth and stress responses.
The study identifies a novel C-terminal FR motif in Lotus japonicus NODULE INCEPTION (NIN) that expands DNA‑binding specificity by stabilizing the RWP‑RK dimer, and shows that loss of this motif impairs nodulation and nitrogen fixation. Comparative analysis reveals that Arabidopsis NLP2 also possesses a NIN‑type FR, and phylogenetic data suggest the motif originated in early gymnosperms, indicating it predates the evolution of root nodule symbiosis.
The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
Post-Domestication selection of MKK3 Shaped Seed Dormancy and End-Use Traits in Barley
Authors: Jorgensen, M. E., Vequaud, D., Wang, Y., Andersen, C. B., Bayer, M., Box, A., Braune, K., Cai, Y., Chen, F., Antonio Cuesta-Seijo, J., Dong, H., Fincher, G. B., Gojkovic, Z., Huang, Z., Jaegle, B., Kale, S. M., Krsticevic, F., Roux, P.-M. L., Lozier, A., Lu, Q., Mascher, M., Murozuka, E., Nakamura, S., Simmelsgaard, M. U., Pedas, P. R., Pin, P., Sato, K., Spannagl, M., Rasmussen, M. W., Russell, J., Schreiber, M., Thomsen, H. C., Tulloch, S., Thomsen, N. W., Voss, C., Skadhauge, B., Stein, N., Waugh, R., Willerslev, E., Dockter, C.
The study demonstrates that in barley (Hordeum vulgare) the MAPK pathway, specifically the MKK3 kinase, controls grain dormancy through a combination of haplotype variation, copy-number changes, and intrinsic kinase activity. Historical selection of particular MKK3 haplotypes correlates with climatic pressures, offering a genetic basis to balance short dormancy with resistance to pre‑harvest sprouting under climate change.