Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.
The study examined five geographically diverse accessions of the hummingbird‑pollinated monkeyflower Mimulus cardinalis, revealing extensive variation in floral morphology, nectar composition, pigment biochemistry, and scent that influence pollinator perception. Integrating metabolomics, morphology, transcriptomics, and whole‑genome sequencing, the authors identified genetic differences underlying the independent evolution of yellow flowers at range edges. These findings highlight how climate, pollinator interactions, and multi‑trait diversification drive early stages of floral divergence.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
A Multi-lensed Comparative Analysis of Select Secondary Metabolites Produced by Kale, Brassica oleracea, in Simulated Microgravity Versus Gravity Conditions
Authors: Osano, A., Dill, R., Li, Y., Yan, J., Ray, S., Ude, G., Iro, A.
The study examined how simulated microgravity, using a 2-D clinostat, influences the metabolomic profile of the Starbor Kale (F1) cultivar, focusing on flavonoid content. Proton NMR revealed increased aromatic peaks, and HPTLC showed enhanced banding in medium- and high-polarity extracts, indicating elevated secondary metabolite production under microgravity conditions. These findings suggest kale is a promising candidate for space-based cultivation to mitigate astronaut health risks.
The study provides a comprehensive genome-wide catalog and single‑cell expression atlas of the carbonic anhydrase (CA) gene family in maize, identifying 18 CA genes across α, β, and γ subfamilies and detailing their structural and regulatory features. Phylogenetic, synteny, promoter motif, bulk tissue RNA‑seq, and single‑cell RNA‑seq analyses reveal distinct tissue and cell‑type specific expression patterns, highlighting β‑CAs as key players in C4 photosynthesis and γ‑CAs in ion/pH buffering, and propose cell‑type‑specific CA genes as targets for improving stress resilience.
The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.
Evolutionary origin and functional mechanism of Lhcx in the diatom photoprotection
Authors: Kumazawa, M., Akimoto, S., Takabayashi, A., Imaizumi, K., Tsuji, S., Hasegawa, H., Sakurai, A., Imamura, S., Ishikawa, N., Inoue-Kashino, N., Kashino, Y., Ifuku, K.
Molecular phylogenetic analysis indicated that diatom Lhcx proteins share a common ancestor with green algal Lhcsrs, suggesting acquisition via horizontal gene transfer. Knockout of the Lhcx1 gene in the diatom Chaetoceros gracilis almost eliminated non‑photochemical quenching and revealed that Lhcx1 mediates quenching in detached antenna complexes, while also influencing PSII quantum yield and carbon fixation under high‑light conditions. These findings elucidate the evolutionary origin and mechanistic role of Lhcx‑mediated photoprotection in diatoms.
Adaptive Strategies of the invasive aquatic plant, Ludwigia grandiflora subps. hexapetala: Contrasting Plasticity Between Aquatic and Terrestrial Morphotypes.
Authors: Genitoni, J., Vassaux, D., RENAULT, D., Maury, S., BARLOY, D. H.
The study compared aquatic and terrestrial morphotypes of the invasive plant Ludwigia grandiflora subsp. hexapetala under aquatic and terrestrial conditions, measuring morphological traits, metabolomic and phytohormonal profiles at 14 and 28 days. Results showed the terrestrial morphotype has higher baseline morphological values, while the aquatic morphotype exhibits greater phenotypic plasticity, with plasticity indices changing over time, indicating pre‑adaptation and potential local adaptation.