The study combined ecometabolomics of root exudates with fungal community profiling to assess how abiotic (soil moisture, temperature legacy) and biotic (microbial inoculum, plant density) treatments shape metabolite diversity and fungal assemblages in Guarea guidonia seedlings. While soil microbial legacy and moisture drove metabolite diversity, antimicrobial treatments altered metabolite composition, and fungal community structure was linked to metabolite profiles, revealing metabolite‑fungal associations as early indicators of plant response to disturbance.
Researchers isolated a fungal pathogen from a naturally infected Rumex crispus leaf in Japan and identified it as Teratoramularia rumicicola using morphological traits and phylogenetic analysis of ITS and LSU rDNA sequences. Host range tests showed the isolate (TR4) caused disease and reduced biomass in three Rumex species but was harmless to five tested forage crops, indicating its potential as a selective bioherbicide for pasture systems.
Large-scale bioinformatics identified a new class of transmembrane phosphotransfer proteins (TM‑HPt) across 61 plant species, showing conserved HPt motifs and potential activity in multistep phosphorelay signaling. Phylogenetic relationships were inferred via Bayesian DNA analysis, expression was validated by transcriptomics, and molecular modeling suggested possible membrane-associated structural arrangements.
The study identifies a novel C-terminal FR motif in Lotus japonicus NODULE INCEPTION (NIN) that expands DNA‑binding specificity by stabilizing the RWP‑RK dimer, and shows that loss of this motif impairs nodulation and nitrogen fixation. Comparative analysis reveals that Arabidopsis NLP2 also possesses a NIN‑type FR, and phylogenetic data suggest the motif originated in early gymnosperms, indicating it predates the evolution of root nodule symbiosis.
The study reconstructed the evolutionary history of plant-specific GBF1-type ARF-GEFs by building phylogenetic trees and ortho‑synteny groups, identifying orthologs of AtGNOM and AtGNL1 across species. Functional analyses using transgenic Arabidopsis lines and yeast two‑hybrid assays revealed how duplication and loss events diversified GNOM paralogs, separating polar recycling from secretory trafficking functions.
Rapid population flux in bacterial spot xanthomonads during a transition in dominance between two genotypes in consecutive tomato production seasons and identification of a new species Xanthomonas oklahomensis sp. nov.
Authors: Johnson, B., Subedi, A., Damicone, J., Goss, E., Jones, J. B., Jibrin, M. O.
The study examined Xanthomonas strains causing bacterial spot on tomato in Oklahoma fields during 2018‑2019, revealing a shift from X. euvesicatoria pv. euvesicatoria (Xee) to X. euvesicatoria pv. perforans (Xep) race T4, which also expanded to pepper. Phenotypic assays and whole‑genome sequencing highlighted differences in race composition, host range, copper sensitivity, and effector repertoires, and identified a novel species, Xanthomonas oklahomensis.
The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.
The study analyzes ancient maize genomes from a 500–600 BP Bolivian offering and compares them with 16 archaeological samples spanning 5,000 years and 226 modern Zea mays lines, revealing close genetic affinity to ancient Peruvian maize and increased diversity during Inca‑local interactions. Phylogenetic and phenotypic analyses of ovule development indicate targeted breeding for seed quality and yield, suggesting culturally driven selection was already established by the 15th century CE.
The study investigated how plant roots promote water infiltration through dry soil layers using dye tracing in model soil microcosms. Results indicate that dissolved root exudates, possibly by altering surface tension, are the primary drivers of infiltration, with root architecture also contributing. These insights suggest that root traits influencing exudation and structure could improve drought resistance in crops.
Using a barley pangenome of 76 genotypes and a pan‑transcriptome subset of 20, the study characterizes the diversity and evolutionary dynamics of CCT motif genes, uncovering novel frameshift variants and clade‑specific domain expansions. Phylogenetic and tissue‑specific expression analyses reveal functional divergence among paralogs, and the unexpected retention of the VRN2 repressor in spring barley suggests additional regulatory mechanisms beyond vernalization.