The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.
The study introduced charge-altering mutations into the N‑terminal region of Lhcb2 in Arabidopsis thaliana lacking native Lhcb2 to assess how intrinsic charge affects LHCII phosphorylation, state‑transition efficiency, and PSI‑LHCII complex formation. The R2E mutation drastically reduced Lhcb1/2 phosphorylation, impaired state transitions, and prevented PSI‑LHCII assembly, whereas the Q9E mutation had no measurable impact, and neither mutation altered thylakoid ultrastructure. Residual state transitions in the R2E line suggest that other Stn7 substrates can partially compensate for the loss of Lhcb2 phosphorylation.
The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.
The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study reveals that brassinosteroids activate phosphoenolpyruvate carboxykinase (PCK) by promoting dephosphorylation of conserved Ser-62 and Thr-66 residues, a process antagonized by the GSK3-like kinase BIN2. BR‑deficient Arabidopsis mutants exhibit reduced PCK activity, while phospho‑blocking mutations confer BR‑independent activation and enhanced seedling growth, and similar regulatory mechanisms are observed in maize and sorghum leaves.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
EPP1 is an ancestral component of the plant Common SymbiosisPathway
Authors: Rich, M. K., Vernie, T., Tiwari, M., Chauderon, L., Causse, J., Pellen, T., Boussaroque, A., Bianconi, M. E., Vandenbussche, M., Chambrier, P., Le Ru, A., Castel, B., Nagalla, S., Cullimore, J., Keller, J., Valdes-Lopez, O., Mbengue, M., Ane, J.-M., Delaux, P.-M.
The study identifies EPP1 as a fourth, conserved component of the ancestral common symbiosis pathway required for intracellular plant–microbe interactions, showing that its loss impairs arbuscular mycorrhizal colonization across diverse plant clades. EPP1 is phosphorylated by the plasma‑membrane receptor SYRMK, and this modification is essential for downstream activation of the nuclear kinase CCaMK, positioning EPP1 upstream in the signaling cascade.
The study investigated metabolic responses of kale (Brassica oleracea) grown under simulated microgravity using a 2-D clinostat versus normal gravity conditions. LC‑MS data were analyzed with multivariate tools such as PCA and volcano plots to identify gravity‑related metabolic adaptations and potential molecular markers for spaceflight crop health.