Comparative transcriptomics uncovers plant and fungal genetic determinants of mycorrhizal compatibility
Authors: Marques-Galvez, J. E., de Freitas Pereira, M., Nehls, U., Ruytinx, J., Barry, K., Peter, M., Martin, F., Grigoriev, I. V., Veneault-Fourrey, C., Kohler, A.
The study used comparative and de‑novo transcriptomic analyses in poplar to uncover plant and fungal gene regulons that govern ectomycorrhizal (ECM) compatibility, distinguishing general fungal‑sensing responses from ECM‑specific pathways. Key findings include modulation of jasmonic acid‑related defenses, coordinated regulation of secretory and cell‑wall remodeling genes, and dynamic expression of the Common Symbiosis Pathway during early and mature symbiosis stages.
High radiosensitivity in the conifer Norway spruce (Picea abies) due to lesscomprehensive mobilisation of protection and repair responses compared to the radiotolerant Arabidopsis thaliana
Authors: Bhattacharjee, P., Blagojevic, D., Lee, Y., Gillard, G. B., Gronvold, L., Hvidsten, T. R., Sandve, S. R., Lind, O. C., Salbu, B., Brede, D. A., Olsen, J. E.
The study compared early protective, repair, and stress responses to chronic gamma irradiation in the radiosensitive conifer Norway spruce (Picea abies) and the radiotolerant Arabidopsis thaliana. Norway spruce exhibited growth inhibition, mitochondrial damage, and higher DNA damage at low dose rates, while Arabidopsis maintained growth, showed minimal organelle damage, and activated DNA repair and antioxidant genes even at the lowest dose rates. Transcriptomic analysis revealed that the tolerant species mounts a robust transcriptional response at low doses, whereas the sensitive species only responds at much higher doses.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.
The study analyzes ancient maize genomes from a 500–600 BP Bolivian offering and compares them with 16 archaeological samples spanning 5,000 years and 226 modern Zea mays lines, revealing close genetic affinity to ancient Peruvian maize and increased diversity during Inca‑local interactions. Phylogenetic and phenotypic analyses of ovule development indicate targeted breeding for seed quality and yield, suggesting culturally driven selection was already established by the 15th century CE.
The study used comparative transcriptomics to examine how Fusarium oxysporum isolates with different lifestyles on angiosperms regulate effector genes during infection of the non‑vascular liverwort Marchantia polymorpha. Core effector genes on fast core chromosomes are actively expressed in the bryophyte host, while lineage‑specific effectors linked to angiosperm pathogenicity are silent, and disruption of a compatibility‑associated core effector alters the expression of other core effectors, highlighting conserved fungal gene networks across plant lineages.
The Global Wheat Full Semantic Organ Segmentation (GWFSS) dataset
Authors: Wang, Z., Zenkl, R., Greche, L., De Solan, B., Bernigaud Samatan, L., Ouahid, S., Visioni, A., Robles-Zazueta, C. A., Pinto, F., Perez-Olivera, I., Reynolds, M. P., Zhu, C., Liu, S., D'argaignon, M.-P., Lopez-Lozano, R., Weiss, M., Marzougui, A., Roth, L., Dandrifosse, S., Carlier, A., Dumont, B., Mercatoris, B., Fernandez, J., Chapman, S., Najafian, K., Stavness, I., Wang, H., Guo, W., Virlet, N., Hawkesford, M., Chen, Z., David, E., Gillet, J., Irfan, K., Comar, A., Hund, A.
The Global Wheat Dataset Consortium released a comprehensive semantic segmentation dataset (GWFSS) of wheat organs across developmental stages, comprising 1,096 fully annotated images and 52,078 unannotated images from 11 institutions. Models based on DeepLabV3Plus and Segformer were trained, with Segformer achieving ≈90% mIoU for leaves and spikes but lower precision (54%) for stems, while also enabling weed exclusion and discrimination of necrotic, senescent, and residue tissues.
Using a barley pangenome of 76 genotypes and a pan‑transcriptome subset of 20, the study characterizes the diversity and evolutionary dynamics of CCT motif genes, uncovering novel frameshift variants and clade‑specific domain expansions. Phylogenetic and tissue‑specific expression analyses reveal functional divergence among paralogs, and the unexpected retention of the VRN2 repressor in spring barley suggests additional regulatory mechanisms beyond vernalization.
Phylogenetic analysis reveals that non‑seed plants, exemplified by the liverwort Marchantia polymorpha, possess a streamlined repertoire of cyclin and CDK genes, with only three cyclins active in a phase‑specific manner during vegetative development. Single‑cell RNA‑seq and fluorescent reporter assays, combined with functional overexpression studies, demonstrate the distinct, non‑redundant roles of MpCYCD;1, MpCYCA, and MpCYCB;1 in G1 entry, S‑phase progression, and G2/M transition, respectively.
The study generated a high-quality genome assembly for Victoria cruziana and used comparative transcriptomics to identify anthocyanin biosynthesis genes and their transcriptional regulators that are differentially expressed between white and light pinkish flower stages. Differential expression of structural genes (VcrF3H, VcrF35H, VcrDFR, VcrANS, VcrarGST) and transcription factors (VcrMYB123, VcrMYB-SG6_a, VcrMYB-SG6_b, VcrTT8, VcrTTG1) correlates with the observed flower color change.
RNA‑seq of 328 wheat lines using a pan‑genome reference uncovered over 20,000 additional transcripts beyond the Chinese Spring genome and enabled construction of a pan‑gene eQTL regulatory atlas. Multi‑omics integration identified 231 high‑confidence candidate genes influencing 34 agronomic traits and powdery mildew resistance, with functional validation showing 80% of candidates affecting trait phenotypes via an EMS mutant library.