Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 3 Papers

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

High-resolution transcriptional atlas of growing maize shoot organs throughout plant development under well-watered and drought conditions

Authors: Zhang, J., Verbraeken, L., Sprenger, H., Mertens, S., Wuyts, N., Cannoot, B., De Block, J., Demuynck, K., Natran, A., Maleux, K., Merchie, J., Crafts-Brandner, S., Vogel, J., Bruce, W., Inze, D., Maere, S., Nelissen, H.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.12.642568

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study mapped the macroscopic and cellular development of maize leaves and internodes, revealing a shared growth design with organ‑specific timing. Using high‑resolution spatiotemporal transcriptome profiling of 272 tissue samples under well‑watered and drought conditions, the authors generated a searchable expression atlas and identified conserved and organ‑specific gene regulatory patterns, including genes linked to leaf angle and vascular development. This resource advances understanding of shoot organ development and drought response for targeted trait engineering in maize.

Zea mays leaf and internode development drought stress spatiotemporal transcriptome atlas gene regulatory networks